California standards
Summary from Science Framework

Standard Set 1.
Periodic Table

Students will need to know the chemical symbols of the common elements. It will be helpful for them to be familiar with other properties of materials, such as melting temperatures, boiling points, density, hardness, and thermal and electrical conductivity. By the time students begin the study of this standard set, they should be familiar with the periodic table and should know the names and chemical symbols of most of the common elements. In this standard set they must now look in greater detail at and learn the significance of atomic numbers and isotopes and how they relate to the classification of elements. Students need to go more deeply into the elemental properties that serve as the basis for the periodic arrangement. Meeting the standards in this set will serve as a strong foundation for the study of atomic and molecular structures and of the relationship between these structures and the arrangement of elements on the periodic table that will take place in high school chemistry.

A common form of the periodic table has 18 columns (groups of elements) in the main body. This form shows the periodicity, or repeating pattern, of chemical and some physical properties of the elements. What varies most in published periodic tables is the information provided in the box that represents each element. The most useful tables are those that show the physical properties of the most common form of the element in addition to the atomic number and the atomic weight. A table that color-codes metals and nonmetals is also useful.

Elements shown toward the top of the periodic table are lighter, and those toward the bottom are heavier. Elements shown to the left are generally metallic, and those toward the right are nonmetallic. The word metallic refers to the collective properties of common metals: luster, malleability, high electrical and thermal (heat) conductivity. Although the majority of elements in the periodic table are metals, a few are classified as semimetals and may be found bordering the transition between the metals and nonmetals. When atoms from the left side of the table combine with atoms from the right side, they tend to form ionic salts, which are brittle crystalline compounds with high melting temperatures.

At the high school level, students will learn that the arrangement of the elements in the columns of the periodic table reflects the electron structure of the atoms of each element. This pattern explains the similarity in the chemical properties of the elements in each column of the periodic table.

Students should be readily able to use the periodic table to find the atomic number of an element and should know that there is a pattern of increasing atomic numbers as the table is read from left to right and down one row at a time. The lanthanides and actinides are placed off the table to save space; however, if they were placed in the table they would still be read in the same manner—from left to right and then down. Students should also know that the atomic number is the number of protons in the nucleus.

excerpt from:
Chapter Five: Earth Science, Investigation and Experimentation.
Science Framework for California Public Schools: Kindergarten Through Grade Twelve, 2004.
California Department of Education.

Acquired from online source on July 13, 2007.


Relevance 


Overview 




Core concepts and related resources 





Prerequisites 





Engaging and relevant topics 






© 2007 Earthguide at Scripps Institution of Oceanography.
All rights reserved.