CHAPTER XIV

Waves and Tides *
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Introduction

The preceding sections have dealt with the types of motion in the
ocean that bring about transport of water masses in a definite direction
during a considerable length of time. They have also dealt with the
random motion, the turbulence, which is superimposed upon the general
flow. Besides these types, one has also to consider the oscillating motion
characteristic of waves. In general, this motion manifests itself to the
observer more by the rise and fall of the sea surface than by the motion of
the individual water particles.

Waves have attracted attention since before the beginning of recorded
history, and in recent years they have been the subject of extensive
theoretical studies. Surveys of our knowledge as to the character of
ocean waves have been presented by Cornish (1912, 1934), Kriimmel
(1911), Patton and Marmer (1932) and by Defant (1929). Lamb
(1932) has discussed the hydrodynamic theories of waves, and Thorade
(1931) has given a comprehensive review of the theoretical studies of
ocean waves and has compiled a long list of literature covering the period
from 1687 to 1930.

Our understanding of the waves of the ocean, how they are formed
and how they travel, is as yet by no means complete. The reason is, in
the first place, that actual observations at sea are so difficult that the
characteristics of the waves cannot easily be determined. In the second
place, the theories that serve to bring the observed sequence of events in
nature into intimate connection with experience gained by other methods
of study are still incomplete, particularly because most theories are based
on classical hydrodynamics, which deal with wave motion in an idealized
fluid. Here will be presented only a brief review of the best-established
facts concerning waves and of some of the more outstanding theoretical
accomplishments. Readers who wish to gain further insight are referred
to some of the above-mentioned books.

In order to classify waves, it is necessary to introduce certain defini-
tions. Wave height, H, is defined as the vertical distance from trough
to crest, whereas wave amplitude, @, is one half of that distance (fig. 128).

* Pages 532-537 revised in 1946.
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Wave period, T, is defined as the time elapsed in a fixed locality between
the oceurrence of one wave crest and the occurrence of the next. Wave
length, L, is the horizontal distance from crest to crest or from trough to
trough. The term ‘‘wave velocity,” ¢, is applicable to a sequence of
uniform waves passing a given locality. The wave velocity is equal to
the distance traveled by the wave in 1 sec. If a wave progresses in
the z direction and if the crest was at the locality z = 0 at the time
t = 0, it will have advanced one wave length when a time equal to the
wave period has elapsed, or when { = 7. Thus, the wave advances the
distance L in the time 7', and therefore ¢ = L/T.
PROGRESSIVE WAVE
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Fig. 128. Schematic representation of a progressive and of a standing wave.

For a wave the amplitude of which is small compared to the wave
length, the height of the free surface, , at a given locality can be repre-
sented by means of a simple harmonie function,

2nt

1;=aSiIl 7R

= @ sin of. (XIV, 1)

For a progressive wave of small amplitude, the variation in time and space
of the free surface can be written

n=asin21r(%——%)=asin(o-t~xxj, am?%; x:%r-
(XIV, 2)

A standing wave (fig. 128) can be considered as composed of two progres-
sive waves traveling in opposite directions, and the term “velocity of
progress’ retains, therefore, a definite meaning.

In wave motion, two types of velocity have to be considered: the
velocity of progress of the wave itself and the velocity of the individual
water particles. In a progressive wave the water particles move in
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circles or in ellipses whereas in a standing wave they move in straight
lines which are horizontal at the nodes and vertical at the antinodes.

The rise and fall of the free surface can be ascribed to convergence
and divergence of the horizontal motion of the water particles. Within
a progressive wave (fig. 128, also fig. 98, p. 426) the horizontal flow at the
wave crest is in the direction of progress, and at the trough it is opposite
to the direction of progress. Convergence therefore takes place between
the crest and the trough, and there the surface rises. Within a standing
wave (fig. 128) the horizontal velocity is zero at every point at the time
when the wave reaches its greatest height. During the following half
period the horizontal velocity is directed from the crest to the trough,
causing divergence below the crest and convergence below the trough,
for which reason the crest will sink and the trough will rise. This process
continues until the positions of the crest and of the trough become inter-
changed, and during the following half period the horizontal motion is
reversed. The vertical velocity is always zero halfway between the
crest and the trough, where the wave has nodes. The horizontal velocity
is always zero at the crests and troughs, where the wave has antinodes or
loops. Evidently a vertical wall can be inserted at the antinode without
altering the character of the wave, because no horizontal motion exists
at the antinode.

From a different point of view, waves can be classified as forced
or free waves. A forced wave is a wave that is maintained by a periodic
force, and the period of a forced wave must always coincide with the
period of the force, regardless of the dimensions of the basin or of fric-
tional influence. A free wave, on the other hand, represents one of the
possible oscillations of a body of water if this body is set in motion by a
sudden impulse. The period of a free wave depends on the dimensions
of the basin and on the effect of friction. Later on, these types will be
dealt with more fully.

When ocean waves are concerned, gravity and Corioli’s force are the
two important forces to be considered. For waves of a few centimeters
in length the surface tension of the water has to be taken into account, but
such waves are of no consequence in the sea. We shall therefore deal
with gravity waves only and shall at first neglect Corioli’s force.

A rational division of gravity waves into two classes can be made
when considering the relation between wave velocity, wave length, and
the depth to the bottom. The wave velocity can with sufficient accuracy
be represented by means of the equation of classical hydrodynamics:

¢t = 9L tanh 2T, (XIV, 3)
where % is the depth to the bottom. If the depth to the bottom exceeds
about half a wave length, tanh 2x(h/L) can be put equal to unity, and
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_ L
i (XIV, 4)

In this case the velocity of the wave is independent of the depth but
dependent upon the wave length.

If, on the other hand, the depth is small compared to the wave
length, tanh 2rh/L can be replaced by 2rh/L, so that ¢ = \/gh. Thus,
if the depth is small compared to the wave length, the velocity of the
wave depends only on the depth to the bottom and is independent of
the wave length. The latter waves are called long waves, whereas the
former, the velocity of which is independent of depth, are called short
waves, or surface waves. For water of any given depth the transition
takes place within a narrow range of wave lengths, for which reason the
classification is a very satisfactory one.

The physical reason for the difference between the surface waves
and the long waves has been explained in simple words by H. Jeffreys
(Cornish, 1934). Jeffreys points out that within surface waves the
individual water particles near the surface move in circular orbits, but
that the radii of these orbits, and therefore the velocities, decrease
rapidly with depth. Theoretically the diameter of orbits at a depth of
one half the wave length is only one twenty-third of the corresponding
diameter at the surface. Regardless of the actual depth the character
of the wave therefore remains unaltered if the depth to the bottom is
greater than that short distance. Direct observations for substantiating
this conclusion have not been made, but experience on submarines shows
that in deep water a moderate wave motion decreases rapidly with depth
and becomes negligible at a short distance below the surface, say at a
depth of 30 m.

In shallow water the fact that no vertical motion can exist at the
bottom modifies the character of the waves. At the bottom the motion
can be only back and forth, and, if the depth is small compared to the
wave length, the motion will remain nearly horizontal at all depths.
Actually, the orbits of the single water particles will be flat ellipses that
become more and more narrow when approaching the bottom, and at the
bottom they degenerate into straight lines.

In a sea of variable depth the transition from short to long waves
begins when the depth to the bottom becomes less than half the wave
length, or where h < 14L. Since L = T%/2r (p. 525) it is possible to
establish a relation between the critical depth at which the transformation
begins to take place and the wave period:

formula (XIV, 3) is reduced to

._1 12

This formula is preferable to one containing the wave length, because the
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wave period is more easily measured. The longest periods of ocean
surface waves are seldom more than 10 to 12 sec, and & is therefore of the
order of 100 m, meaning that the transformation of surface waves of
periods 10 to 12 sec begins when depths less than 100 m are encountered.

Waves of tidal period, on the other hand, always have the character
of long waves. If the rotation of the earth is disregarded, their velocity
of progress is equal to 4/gh = L/T if h/L is so small that tanh 2xh/L
equals 2rh/L. The equation 4/gh = L/T can be written

ki d \/E

L= TNg
For the semidiurnal tide, T is about 44,700 sec. Even with 2z = 10,000 m
= 10° em, one obtains h/L = {350, and this value is sufficiently small
to make tanh 2xh/L equal 2rh/L. Waves of tidal period have therefore
the character of long waves.

For waves of short periods the rotation of the earth can be dis-
regarded, as can be shown by comparing the accelerations of the moving
particles with Coriolis force. If Coriolis force is very small compared
to the accelerations, it can be disregarded, because it is then negligible
compared to the other forces, the resultant of which represents the
accelerations.

Coriolis force is proportional to 2w sin ¢ v, where v is the hori-
zontal velocity, and the acceleration, dv/dt, is proportional to (2x/T)v.
The ratio between Coriolis force and the acceleration due to the wave
motion is therefore proportional to (7'/27)2w sin ¢ or to (T/7.)2 sin ¢,
where T, is the period of rotation of the earth. If the period is meas-
ured in hours, one can write (T/7.)2 sin ¢ = (T/12)sin ¢. Now,
12/sin ¢ is equal to one half pendulum day (p. 437), and it can therefore
be stated that the earth’s rotation will be of importance to wave motion
if the period of the wave approaches the length of one half pendulum
day. For ocean surface waves the wave period T is always a very small
fraction of half a pendulum day, for which reason the deflecting force is
negligible beside the other forces, but long waves may be of tidal period,
in which case the period length is of the same order of magnitude as a
pendulum day, meaning that the deflecting force is of the same importance
as other acting forces. Coriolis force will therefore be introduced when
dealing with these waves. ‘

Another noteworthy characteristic of surface waves is that below
the depth to which motion of particles is perceptible the pressure remains
constant when the waves pass. A pressure gauge placed on the bottom,
if the depth were great enough, would not show any effect of surface
waves, regardless of their height. The reason is that below the crest of
the wave the acceleration is directed downward and will therefore
counteract the effect of the acceleration of gravity, but below the trough
the acceleration is directed upward and will be added to the acceleration
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of gravity. Consequently, under the crest a column of water exerting
a given pressure will be of greater height than under the trough, and,
at the level at which the motion is imperceptible, the difference in height
equals the wave height. At and below this depth a pressure gauge
will not record any surface waves. The above statements can be exactly
verified by means of the general equations of motion as applicable to
surface waves.

For waves of long periods the vertical accelerations, on the other
hand, can be neglected, because the vertical displacements require a
very long time. Consider a surface wave of period 10 sec and height
1 m, and a long wave of semidiurnal tidal period 44,700 sec and height
1 m. The ratio of the average vertical accelerations during the time
when a water particle near the surface moves from its lowest to its highest
position is inversely proportional to the square of the ratio of the wave
periods, or in the wave of tidal period the vertical accelerations are about
5 X 1078 times the vertical accelerations within the surface wave—
that is, they are negligible. Consequently, when a long wave passes, the
pressure at any given level is proportional to the height of the water, and
a pressure gauge at the bottom gives a true record of the passing wave.

Some of the most outstanding characteristics of ocean surface waves
and long waves can be summarized as follows:

Character of wave.
Velocity of progress.

Movement of water par-
ticles in a vertical plane.

Vertical displacement of
water particles.

Distribution of pressure.

Influence of the earth’s
rotation.

Surface Waves
Progressive,standing,forced
or free.

Dependent on wave length
but independent of depth.
In circles, the radii of which
decreagse rapidly with in-
creasing distance from the
surface. Motion imper-
ceptible at a depth which
equals the wave length.
In some types of surface
waves the motion is in wide
ellipses.

Decreases rapidly with in-
creasing distance from the
surface and becomes imper-
ceptible at a depth which
equals the wave length.
Below the depth of percep-
tible motion of the water
particles the pressure is not
influenced by the wave.
Negligible.

Long Waves

Progressive,standing,forced
or free.
Dependent on depth but
independent of wave length.
In ellipses which are so flat
that practically the water
particles are oscillating back
and forth in a horizontal
plane. Horizontal motion
independent of depth.

Decreases linearly from the
surface to the bottom.

The wave influences the
pressure distribution in the
same manner at all depths.

Cannot be neglected if the
period of the wave ap-
proaches the period of the
earth’s rotation. The ve-
locity of progress of the
wave and the movement of
the water particles are
modified.
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In the following discussion the characteristics of the wave types of
the oceans will be dealt with more fully.

Surface Waves

ORIGIN OF SURFACE WAvVEs. Itis evident to the most casual observer
that surface waves are created by wind, but only recently, in a work by
H. Jeffreys, has a successful physical explanation of the process been
presented (Defant, 1929, Thorade, 1931). Jeffreys avails himself of the
fact that in air in turbulent flow, eddies are formed on the lee side of
obstacles. If a strong wind blows against an isolated house, an eddy is
formed in the same manner that eddies are formed behind stones in a
river. 'The result is that the wind exerts a pressure on the windward side
of the house, but on the lee side there will be suction. Similarly, when
the wind blows over a sequence of waves, eddies will be formed on the lee
side of the waves, for which reason the pressure of the wind will be greater
on the windward slopes than on the slopes that are sheltered by the crests.
This condition can prevail, however, only if the waves travel at a velocity
that is smaller than the speed of the wind. On the basis of these argu-
ments, Jeffreys finds that waves may increase only if

r

(W — )2 > i‘ig%;ﬂ- (XIV, 5)

Here W is the velocity of the wind, ¢ is the velocity of the waves, »is the
kinematic viscosity of the water, g is the acceleration of gravity, p and p’
are the densities of the water and the air, respectively, and s is a non-
dimensional numerical coefficient that Jeffreys calls the ‘“sheltering
coefficient.” It should be observed that in his reasoning Jeffreys takes
into account both the turbulent character of the wind and the viscosity of
the water. His theory therefore must be expected to give results in better
agreement with actual conditions than earlier theories based on the con-
cepts of classical hydrodynamies, which neglect turbulence and viscosity.
The term on the right-hand side of equation (XIV, 5) is always posi-
tive. The product on the left-hand side must therefore always be
positive and can exceed the right-hand term only if the wave velocity
differs sufficiently both from zero and from the wind velocity. For
any given wind velocity, there can be only a limited range of possible
wave velocities. It is readily seen that at a given wind velocity the left-
hand side of (XIV, 5) is at a maximum whene¢ = 14W. Therefore, unless

A
W > 27#9'(:‘{_9), (XIV, 6)
there will be no values of ¢ that satisfy the condition.
Equation (XIV, 6) determines the velocity of the weakest wind which
can raise any waves, and this weakest wind could be determined if the
sheltering coefficient were known. Jeffreys has not been able to make
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independent determinations of this coefficient, but has, instead, conducted
wind measurements over ponds in order to determine the lowest velocity
at which small waves appear. He found that at wind velocities of less
than 1 m/sec no disturbance of the surface occurred, but that at a velocity
of about 1.1 m/sec distinct waves appeared. The corresponding value
of the sheltering coefficient, s, would be about 0.27. It should be
observed, however, that, because of the rapid change with height of wind
velocity near a boundary surface, this numerical value and the limiting
wind velocity both depend upon the height above the water at which the
wind velocity was measured.

The velocity of the smallest possible waves should be one third of
the limiting wind velocity, or about 37 em/sec, and according to the
theory the corresponding wave length must be 8.8 em (p. 525). Thus,
measurements of the smallest waves can be used for testing the correctness
of the theory, but measurement of such small wave lengths is very difficult
and no exact observations have been made. Jeffreys finds that the length
of the shortest waves observed by him lies in the neighborhood of the
theoretical value. On the other hand, Scott Russell reported in 1844 that
he had measured surface waves of a length of only 5 em, and the smallest
waves measured by Cornish are only about 2.5 ¢cm long. The problem
of the generation of surface waves is therefore not satisfactorily solved,
but the approach by Jeffreys is in better agreement with observations
than is any previous attempt.

It should be added that if only the forces due to surface tension
and gravity are considered, waves should not be formed until the wind
velocity passes the limit of 6.7 m/sec, and if only the stress of the
wind on the surface and gravity are taken into account, the limiting wind
velocity will be about 4.8 m/sec. Experience shows that these values are
far too high, and the turbulent character of the wind must therefore be
of the greatest importance.

Form anD CuaracTERISTICS. In physics the general picture of
surface waves is that of sequences of rhythmic rise and fall which appear
to progress along the surface when progressive waves are concerned, or
which appear stationary if standing waves are being considered. The
actual appearance of the surface of the open sea, however, is mostly
in the sharpest contrast to that of rhythmic regularity. If a wind blows,
waves of all different sizes are present, varying in form from long, gently
sloping ridges to waves of short and sharp crests. Superimposed on the
gentler waves, which may or may not run in the direction of the wind,
series of deformations of the surface appear which, from the point of
view of physics, can be termed “waves” only by stretching the definition.

If the sea surface were characterized by an unbroken series of waves
of the same amplitude, a chart of the topography of the surface would
contain nothing but a series of straight lines showing the alternating wave



524 WAVES AND TIDES

troughs and wave crests. In recent years a number of stereophotogram-
metric pictures of the sea surface have been made, particularly on the
Meteor Expedition (Schumacher, 1928, 1939), and more recently by
Japanese oceanographers (Hidaka, 1939). On the basis of photographs
chumacher has prepared topographic charts show-
ing the actual sea surface as a
wave approaches the wvessel.
One of these representations, in
somewhat simplified form, is
given in fig. 129. The elevation
of the sea surface above an
arbitrarily selected plane varies
between 9 m near the center of
the picture to about 1 m to the
right of the highest point.
Thus, the difference in elevation
is a little over 8 m, and the hori-
zontal distance between the
highest and lowest points is
about 57 m.

The most striking character-
istic of the picture is not a regu-
lar sequence of waves but a great
irregularity in topography. A
relation to the direction of the
wind is evident, however, be-

Fig. 129. Topography of the sea surface 3 -
derived from stereophotogrammetric pictures cause the wind was blowing at
of the sea surface taken on board the Meteor pearly right angles to the pre-

on January 23, 1926, in lat. 59°S, long. o . .
63°4'W. The state of the sea was re,corded v.'a.lhng direction of the qontour
a8 6, waves as advancing from WSW, wind lines of the surface, but, instead

WSW 7 (Beaufort). of a long wave crest running at
right angles to the wind direction, there are two separate heights, one of
which is very steep. This irregular appearance, the ““cross sea’ (Kreuz
See) is more common in the open ocean than the swells with long crests,
which are more conspicuous near the coast, where series of long waves
may roll against the beach in rhythmic sequence.

In spite of the irregular appearance of the sea, it is possible to apply
the terms wave period, wave height, and wave length, because some of the
waves will be more conspicuous than others and their characteristics can
be observed. As has already been stated, the general theory of waves
on the surface of the sea leads to a simple formula for the wave velocity:

ol T
G T N %
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from which the relations

_2r 9 m L ek g
4% 7 L e S
i
and Y= z@z%{c, a:?l:g
g q 1 e

are derived. These formulae apply only to waves the amplitude of which
is small relative to the length and, therefore, cannot be expected to be
valid in all cases.

Of the three interrelated quantities, ¢, 7, and L, the wave period T
can probably be most easily determined by using the method which was
proposed by Cornish (1934) and which consists in recording the time
intervals between appearances of a well-defined patch of foam at a suffi-
cient distance from the ship. The same method can be used on the coast,
where, in addition, the interval between breakers can be accurately
timed. A simple device for recording the movement of a floater on a
rotating drum has been used with success at the end of the Seripps
Institution of Oceanography pier (Shepard and La Fond, 1940). At sea
the wave length is mostly estimated on the basis of the ship’s length, but
this procedure leads to uncertain results, because it is often difficult to
locate both crests of the wave relative to the ship and because of dis-
turbances due to the waves created by the movement of the ship. The
most satisfactory measurements are made from a ship that is hove to.
Another method consists in letting out a floater as a wave crest passes
the stern of the ship and recording both the length of line paid out when
the floater reappears on the crest and the angle that the line forms
with the heading of the ship. The velocity of the wave can be found by
recording the time needed for the wave to run a measured distance along
the ship. If the period is also determined, the wave length is found
from the simple formula L = ¢T.

A large number of measurements have been made at sea in order to
establish the relationship between the wave period, the wave length, and
the wave velocity. Critical examination of the methods employed has
been made, especially by Cornish (1912, 1934), and a number of average
results have been compiled by different authors. Table 68 contains
one of the compilations made by Kriimmel, from which it is evident that
the observed values are in fair agreement with the theoretical expectation.

The longest wave periods observed at sea rarely exceed the value of
13.5 sec, which Cornish reports from the Bay of Biscay. It has been
established, however, that the swell reaching the shore may have much
longer periods and correspondingly longer wave lengths and greater
velocities of progress. The longest period that Cornish has observed is
about 22.5 sec, corresponding to a wave length in deep water of about
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850 m and a velocity of progress of 35 m/sec.” This difference between the
waves of the open ocean and the swells that reach the coast will be dealt
with later on (p. 536). :

The theory of waves leads not only to a relation between velocity of
progress and the wave length, but also to results concerning the profile

TABLE 68

OBSERVED AND COMPUTED VALUES OF VELOCITIES, LENGTHS, AND
PERIODS OF SURFACE WAVES

Wave velocity, Wave length, m | Wave period, sec

m/sec
: Computed Computed Computed
Region from from from
Ob- o L iOhe Ob-
served \/@ T served Ome? T served \F}f 2re
g21r g27r g g27r g g

Atlantic Ocean
Trade wind region. .| 11.2 | 10.8 | 10.5| 65 70 61 5.8 6.0 6.2
Indian Ocean
Trade wind region..| 12.6 | 13.1 | 13.7| 96 88 | 104 | 76| 7.83)6.9
South Atlantic Ocean
West wind region...| 14.0 | 15.5 | 17.1] 133 109 | 163 9.5 8.6 | 7.8
Indian Ocean
West wind region...| 15.0 | 15.2 | 13.7| 114 125 104 | 7.6 | 8.0 8.3
Ching:Sea. .. vl 11 42L 119 112 41 79 72 86 6.9 6.6 | 6.3
Western Pacific Ocean.| 12.4 | 13.6 | 14.7| 102 85 | 121 8.2 7.5 6.9

of the wave. These results are based on the concepts of classical hydro-
dynamics and have been derived from the hydrodynamic equations,
omitting friction but taking the boundary conditions into consideration.
In an ideal fluid the free surface of the waves, according to Stokes’
results of 1847 (Lamb, 1932), very nearly take the shape of a trochoid—
that is, the curve which is formed by the motion of a point on a disk when
this disk rolls along a level surface. If the amplitude is small compared
to the wave length, the trochoid approaches in shape a sine curve, but at
great amplitude the crests become narrower and the troughs longer.
Gerstner’s theory of 1802 leads exactly to the trochoid form, but Stokes
has pointed out that this theory is not compatible with irrotational move-
ment as generally assumed in classical hydrodynamics.

Stokes’ results lead to the conclusion that at increasing amplitude the
wave form deviates more and more from the trochoid. Studies of the
stability of waves by Michell (Lamb, 1932) show that the wave becomes
unstable if the angle formed by the crest approaches 120°, and that the
smallest ratio of height to length is 1:7 (fig. 130). The velocity of
progress of these waves is no longer independent of the height; in the case
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of the extreme Michell wave, it is about 1.2 times greater than that of
waves of small amplitude.

Accurate measurements of actual wave profiles would be very desirable
in order to examine the correctness of the above-mentioned theoretical

Tig. 130. True dimensions of steepest possible wave, according to Stokes and Michell.

conclusions. Such actual measurements can be based on photogram-
metrie pictures, but so far only a few such pictures havebeen evaluated.
Fig. 131 (Schumacher, 1928) shows two profiles of the wave the topogra-
phy of which was presented in fig. 129 and two profiles of other waves that
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Fig. 131. Profiles of waves (vertical scale 5 X horizontal scale) of waves derived
from stereophotogrammetric pictures taken on the Meteor. The two lower profiles
refer to the wave shown in fig. 129; the two upper profiles refer to waves photographed
on July 7, 1926. The waves proceed from right to left. The dashed curves represent
trochoids.

were photographed on the Meteor Expedition. In the figure the trochoids
are entered as dashed lines, and it is seen that these curves can hardly be
considered as fitting the actual profiles with any degree of accuracy.
The wave theory also leads to certain conclusions concerning the
character of motion of individual water particles. In a wave that has
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the form of a trochoid, the single water particles will describe circles the
radii of which decrease with increasing depth:
r=ae 'L,

where, as previously, a is the amplitude of the wave, L is the wave length,
and #z is the depth below the undisturbed water surface. Each water
particle describes a circle with radius r in the time T that represents
the period of the wave. The velocities of the individual water particles
are, then,

T o
T

These formulae are valid only when the amplitude of the wave is small
relative to the length, but they may nevertheless be used for an approxi-
mate computation of the greatest velocities encountered in waves. In the
first columns of table 69 are given the periods, the corresponding wave

TaBLE 69

VELOCITIES OF WATER PARTICLES AT DIFFERENT DEPTHS IN SUR-
FACE WAVES OF DIFFERENT PERIODS, LENGTHS, AND HEIGHTS

Wave characteristics iy Oi;tgzergii‘:;tl}; cm/sec at
Velocity
Period length | of prog- | Length | Height
(sec) ress (m) (m) .

(em/sec) Om | 2m | 20m | 100m
i 312 6.2 0.25 39 52 0.0 0.0
4. 624 25 1.00 79 49 0.5 0.0
e 937 56 2.00 105 85 11.3 0.0
e e 1249 100 5.00 196 173 55.6 0.4
0 e o 1561 | 156 7.00 220 203 99.0 4.2
R s 1873 225 10.00 211 199 114.0 12.9
A4 = = ol 2I8E 306 12.00 273 262 180.0 35.0
P R 1 396 10.00 197 190 143.0 40.6
18- . 2310 (508 8.00 140 136 109.0 40.5
S e 31205010 5.00 78 76 63.0 28.4

lengths and velocities of progress, and the assumed values of the heights
of waves. It should be observed that the height equals twice the ampli-
tude. The heights entered in the table reach approximately the greatest
heights observed for waves of stated periods up to 14 sec, and the last
three lines of the table correspond to big swells. The last four columns
of the table give the velocities of the water at the surface and at the depths
of 2, 20, and 100 m. The tabulated velocities correspond to the heights
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that are entered in the table, and at different wave heights the velocity
is altered proportionately. It is seen that the surface velocities can reach
very appreciable values, up to 250 em/sec or more, but in the case of the
shorter waves the velocity decreases very rapidly with depth and is
negligible shortly below 20 m. In waves of periods less than 10 sec
the wave motion is negligible below 100 m, in agreement with the previous
conclusion (p. 520) that waves of periods below 10 sec retain their char-
acteristics as surface waves if the depth remains greater than 100 m.

No measurements are available of the actual motion of water particles
in waves. Ixperience in submarines has shown, however, that the wave
motion decreases rapidly with increasing depth. Vening Meinesz has
availed himself of this fact and has been able to conduct observations of
gravity at sea on board a submarine, making use of pendulums, which
can be employed only when the motion of the vessel is small.

Stokes’ theory leads to the conclusion that in waves of finite height
a small transport of water takes place in the direction of progress. A
water particle moves in the direction of progress when it is above its
mean depth, and in the opposite direction when it is below its mean depth,
but, owing to the decrease of velocity with depth, it moves somewhat
faster in the direction of progress than in the opposite direction. Conse-
quently, after having completed one revolution in its orbit, the particle
does not return to the point from which it started, but is advanced some-
what in the direction of progress, meaning that an actual transport of
water takes place in this direction even in the absence of wind (see U.S.
Beach Erosion Board, 1941.)

The irregular appearance of the surface is not accounted for by the
theories that have been mentioned so far, but a somewhat better under-
standing of the pattern of waves is obtained when one takes into account
the phenomenon of interference. Two surface waves that travel in the
same direction can then be represented by the equations

71 = @ sin (o1 — K1), M2 = @a 8in (daf — ko),

and the actual appearance of the surface is obtained by adding the dis-
placements due to the two individual waves. If the amplitudes are equal,
one obtains

7 = 2a cos [14(a; — a9)t —
15(k1 — xa)x] 8in [Y4(o1 + a2)t — 24(k1 + ko)x]. (XIV,7)

If the wave lengths differ by a small amount only, this new equation
represents a wave whose length is the average of the two waves of which
it is composed but whose amplitude varies between zero and 2a. At the
locality where the two waves are in phase, the amplitudes are added,
and a wave appears that has twice the amplitude of the two original
waves, but, where the waves are in opposite phase, the amplitudes cancel.
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The free surface takes the appearance of a sequence of wave groups
separated by regions with practically no waves. The case here is that of
a simple interference, owing to which the two individual waves are no
longer conspicuous but are replaced by a series of wave trains that appear
to progress with a definite velocity:

g1 — 02 C1C2

C= L :
Kyio=t K C1+62

If the wave lengths are only slightly different, this velocity is very nearly
equal to L4c, where ¢ now represents the average velocity of the two inter-
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Fig. 132. Upper curve: Record of waves at the end of the Scripps Institution pier,
showing interference. Middle curve: Computed pattern of wave interference. Lower
curve: Example of the ordinary type of records of waves at the Scripps Institution pier,
showing very complicated conditions.

fering waves. Thus, the wave train progresses with a velocity that is
only one half that of the single waves, which therefore advance through
the wave trains.

The upper curve in fig. 132, which is a reproduction of a record
obtained at the end of the Scripps Institution of Oceanography pier,
represents an example of interference of waves of nearly the same period
length but of different amplitudes. In the middle portion of the figure
are shown two sine curves, one of period 9.6 sec and amplitude 0.75 m,
and one of period 8.7 sec and amplitude 0.32 m. The heavy curve
presents the wave pattern that would result by interference between
the two, and it is seen that this corresponds roughly to the observed
pattern. The discrepancies are accounted for partly by the fact that the
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record was obtained about 300 m from the beach, where the depth to
the bottom was approximately 6 m, for which reason the waves were
somewhat deformed, and partly by the fact that waves of shorter periods
apparently were present. Such relatively clear-cut cases are rare, because
waves of so many different periods are present that the resulting pattern
of interfering waves is extremely complicated. The lower curve in the
figure reproduces a record which has been selected at random and which
shows isolated high waves occurring at apparently irregular intervals.
These considerations help to explain the occurrence of a sequence
of high waves followed by a sequence of low ones, but they do not explain
the irregular pattern of waves that is called “cross sea.” Progress

—
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Fig. 133. Schematic picture of short-crested waves.

towards explaining the typical cross sea, however, has been made by
H. Jeffreys (Defant 1929). The waves that have been dealt with so
far he called long crested, because the crest of the wave is long compared
to the wave length. Mathematically speaking, it is assumed that the
wave crests are of infinite length (see equation XIV, 2). Jeffreys has
introduced the so-called short-crested waves, which can also travel without
altering form and therefore belong to the group of waves that are theo-
retically possible. These waves can be represented by

n = a cos (ot — xx) cos 'y, (XIV, 8)

where L’ = 2r/«’ represents the length of the crests (fig. 133). - This
formula defines a series of waves that travel at a somewhat greater speed
than the long-crested ones:

4
L2
¢ =c \/ e
According to Jeffreys, the first waves that are generated by the weakest

winds must be long crested, but, when the wind increases in velocity,
short-crested waves can be formed. The explanation here is that the
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turbulence of the wind is characterized by random motion not only in
the direction of the wind but also at right angles to the wind. At higher
wind speeds the turbulent velocities at right angles to the wind may be
great enough to produce waves such that the original long-crested ones
are broken or new short-crested ones are created. Short-crested waves
can also be formed by the interference of wave trains that travel in
slightly different directions.

In table 68, only wave velocity, wave length, and wave period are
listed, with no information as to the wave height. A large number of
measurements of wave heights has been made by different methods
which, although uncertain, are considered more accurate than the meas-
urements of wave lengths. The wave height can be found if a location on
board ship can be selected at which the tops of the waves appear level
with the horizon, in which case the wave height is equal to the eye height
of the observer above the water line. Another method is based on the
records of a delicate barometer, and still another that gives very accurate
results makes use of photogrammetric measurements.

The greatest wave heights observed in most oceans are about 12 m.
Cornish gives a very vivid description of waves of such height during a
storm that he experienced in the Bay of Biscay in December, 1911. On
the day preceding the gale a heavy swell with a period of 11.4 sec and an
average height of about 6 m came from the northwest. The wind, which
had blown as a breeze from the southwest, changed during the night to
west-northwest and increased in the morning to a strong gale with
velocities up to 23 m/sec. The period of the waves increased to 13.5 sec,
corresponding to a length of 310 m and a velocity of progress of 21 m/sec,
while the wave height increased to 12 m. There are many accounts of
similar large waves. In a hurricane in the North Atlantic in December,
1922, when the wind velocity probably exceeded 45 m/sec, one of the
officers of the Majestic reported waves that averaged more than 20 m
in height and reached a maximum height of up to 30 m. It is probable,
however, that these great wave heights refer to occasional peaks of water
that may shoot up to elevations considerably above the general wave
height. In the region of the prevailing westerlies of the Antarctic Ocean,
wave heights up to 14 or 15 m have been observed relatively often, but
the average wave height lies much below these values.

GROWTH AND DissipATION oF WiND WavEes. It has long beenrealized
that height, period, and profile of growing wind waves are dependent not
only upon the wind velocity at the time of observation but also upon the
length of time the wind has blown, the duration of the wind; upon the
stretch of water over which the wind blows, the fetch; as well as upon
the waves that were present when the wind started to blow. Neverthe-
less, many attempts have been made to establish empirical relations
between wind velocity on the one hand and wave height, wave velocity,
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or wave steepness, H/L, on the other hand. For the ‘“highest’” waves
produced by a given wind, Cornish (1934) obtained H = 0.48W (wave
height, H, in meters, and wind velocity, W, in m/sec), and Zimmerman
(Patton and Marmer, 1932) obtained H = 0.44W, whereas Kriimmel
(1911) concluded that the maximum wave heights are greater than those
corresponding to a linear relationship. Rossby and Montgomery (1935)
proposed the dimensionally correct formula

H = w?

0.3
g
where the constant, 0.3, is a pure number which has been selected to fit

the available observations.

A similar confusion exists regarding the relation between the velocity
of the ‘““highest” waves and wind velocity. Cornish found ¢ = 0.8W,
whereas Zimmerman obtained ¢ = 2.35W?*. According to the latter
equation the wave velocity is greater than that of the wind up to a wind
velocity of 13.2 m/sec and is smaller when the wind is above this value.
Cornish argues that the wave velocity cannot exceed the wind velocity,
but numerous observations from the trade-wind regions give wave
velocities considerably in excess of the wind velocity (Kriimmel, 1911,
p. 80).

Regarding the steepness, H/L, Cornish and Zimmerman both found
it to decrease with increasing wind velocity, Schott found it to increase,
whereas Kriitmmel found it to be constant.

Stevenson related the ‘“highest” waves to the fetch by the widely
quoted formula, H = 14 /F, where H is the greatest observed wave
height in meters and F is the fetch in kilometers. Not only the wave
height but also the wave velocity increases with increasing length of fetch.
Bérgen (Kriimmel, 1911, p. 73) related the wave height to the duration
but had very few observations for determination of his constants.

In an attempt to bring order out of confusion Sverdrup and Munk
(1946) examined the growth of waves on the basis of energy considera-
tions. Their analysis does not deal with the very first development of
waves and is not applicable at wind velocities below about 6 m/sec.
Furthermore, since the wind does not produce a simple train of waves but
a spectrum of waves ranging from ripples to large billowing seas,
- the numerical relationships are adjusted to apply to the “significant
waves.” These are defined as waves having the average height and
period of the one-third higher waves, excluding ripples and waves of less
than one foot.

Exact heights and periods of the significant waves can be obtained by
laborious evaluations of continuous records. Experience so far indicates,
however, that an observer who attempts to determine the characteristics
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of the higher waves present tends to record values which approximate
those of the significant waves. The following discussion applies, strictly
speaking, to the significant waves, but for the sake of brevity these will be
referred to simply as waves.

Waves grow because energy is transferred from the wind to the waves.
This transfer takes place by two processes: transfer by normal pressure as
discussed by Jeffreys when dealing with the generation of waves, and
transfer by the tangential stress of the wind. The latter process cannot
be neglected. It enters because there is a net forward transport of water
associated with the wave motion (p. 529) and the stress therefore performs
work which increases the wave energy. When dealing with the pure
wind current it was shown (p. 498) that the corresponding work of the
wind stress was used to overcome the effect of dissipation.

The energy which is imparted to the wave is used in part to increase
its height and in part to increase its velocity of progress. When this
velocity is less than the wind velocity the wave receives energy from both
tangential stress and normal pressure. If, however, the wave veloeity
exceeds the wind velocity the wave still gains energy by tangential stress
but it loses energy by normal pressure (it encounters an air resistance).
Finally, the increase in height by energy gained from the effect of the
wind stress is completely compensated for by loss due to air resistance.
The wave height then attains a maximum value:

Hmax =0'_.92__6'W2

which nearly agrees with that of Rossby and Montgomery.

This state will rarely be reached because the development of the waves
is limited by the feich or the duration. At a given wind velocity there
corresponds to any value of the fetch a certain duration, the minimum
duration which is needed to develop the highest possible waves at the end
of the fetch. If the duration is shorter than the minimum duration, the
waves at the end of the fetch are still growing and their height and velocity
depend upon wind velocity and duration only. If the duration exceeds
the minimum the waves do not change with time and they depend upon
wind velocity and fetch only.

Figure 134 shows the relations between wave height and period, fetch
and duration at a wind velocity of 15 m/sec. The heavy curve gives the
wave height as a function of fetch when the wind has blown for avery
long time. If the wind has blown for a given number of hours, the wave
height as function of fetch is found by following the heavy curve until it
intersects the horizontal line that corresponds to the given duration, and
then by following this horizontal line. The change in wave height with
time at the end of a given fetch is found by following a vertical through
the point on the abscissa which corresponds to the given fetch and by
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reading off the wave heights at the points where this vertical intersects
the horizontal “hour” lines. In a similar manner, the dashed curves
show the wave period as function of fetech and duration.

. Figure 134 illustrates the relationship between waves, wind, and fetch
at one given wind velocity only. For practical purposes general repre-
sentations have been prepared. When using these to determine the
waves that are generated by winds blowing over an ocean area it must be
remembered that they are based on the assumption that a constant wind
suddenly starts to blow over an undisturbed sea surface. In practice it
is necessary to introduce average wind velocities and to take into account
waves which may be present when the wind starts to blow. In spite of
these difficulties and in spite of the often poor quality of the observed
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Fig. 134.—Growth of waves with fetch and duration at wind velocity 15 m/sec.

values the analysis leads to a system into which the available wave obser-
vations can be fitted without the discrepancies of earlier compilations.

The analysis also leads to the conclusion that the wave steepness
depends upon the ratio of wave velocity to wind velocity, which has been
called wave age. “Young waves” are steep but “old waves’’ are flat.
With ¢/W = 0.4 the steepness, H/L, equals 1:10 but with ¢/W = 1.2 the
steepness, H/L, equals 1:35. This conclusion is also borne out by the
observations.

When the waves leave the region of high winds, the generating area,
they often travel long distances through regions of calms or variable
wind before they reach a distant coast. In doing so they lose energy and
decrease in height because they encounter an air resistance. At the same
time the velocity (period) of the waves increases. Cornish (1934) and
others have attempted to prove that the wave velocity remains constant,
but theoretical considerations and recent empirical evidence support the
contention that a very noticeable increase takes place.
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The shorter waves are soon reduced so much in height that they
become insignificant but the longer waves decrease slowly and travel over
long distances as swell which becomes more and more regular the farther
it advances. The front of the advancing swell travels with ‘“‘group
velocity”” which equals one-half the phase velocity of the individual
waves. This region is preceded by very long and low “forerunners.”
Such forerunners with periods up to 26 seconds and a length in deep
water of up to 1060 meters have been recorded by means of sensitive
pressure gauges off the coast of Cornwall, England.

Having established the relation between waves, wind, fetch, and dura-
tion, and the laws according to which swell advances, it has become possi-
ble by using weather maps of ocean areas to forecast the arrival of swell.
Wind velocity and direction, fetch and duration are determined from the
weather maps, the corresponding waves are found from one graph, and
the changes in these waves as they advance as swell, together with their
travel time, are obtained from a second graph. This method was devel-
oped and used during World War IT and can be expected to find numerous
peace-time applications.

Waves NEAR THE Coast. BrEakErRs anp Surr. When waves
travel into shoaling water the wave period remains unchanged but the
wave velocity decreases at a rate which depends upon the numerical value
of h/L where h is the depth to the bottom and L is the wave length (see
X1V, 3, p. 518). Since the period is constant but the velocity (L/T)
decreases, it follows that the wave length decreases with decreasing
depth. Observations have fully confirmed the decrease in wave velocity
and wave length as predicted by theory. The effect is negligible unless
h/L is less than 14, and it is therefore often stated that waves begin to
“feel”” bottom when the depth has decreased to one-half a wave length.
For waves of periods 5, 10, 15, and 20 seconds the corresponding depths
are 19.5, 78, 175.5, and 312 meters, respectively. When the ratio h/Ly,
where Ly is the length in deep water, is less than 14, the waves attain the
characteristics of the wave type which was called “long waves” but
which, in this case, should rather be referred to as shallow-water
waves.

If waves travel directly toward a straight coast off which the bottom
slopes uniformly, the wave height, according to theory, first decreases
glightly and then increases rapidly. Field observations have confirmed
the computed inerease but have not been sufficiently accurate to demon-
strate the predicted decrease.

The change in wave height is accompanied by a change in wave form,
the crests become narrow and steep, and the troughs wide and flat.
Breaking of the waves takes place when the particle velocity at the crest
exceeds the velocity of progress of the wave itself. When this occurs the
wave form becomes unstable and the crest topples over. Short wind
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waves are nearly unstable in deep water and they therefore break shortly
after they have felt bottom, whereas long swell advances far into shallow
water before the crests grow steep enough to become unstable. There-
fore, the surf caused by a local sea due to an onshore wind is irregular and
choppy, whereas surf caused by long swell is characterized by long lines
of nearly uniform breakers.

Shortly before breaking, long swell attains the appearance of isolated
crests which travel with a speed that depends upon the depth to the bot-
tom only (XIV, 4, p. 519). The behavior of a single crest corresponds
nearly to that of a solitary wave which breaks when the ratio of depth to
wave height equals 1.28. Observations on uniformly sloping beaches
show that for breakers related to swell the ratio depth to breaker height
is on an average equal to about 1.3, but varies in individual cases between
1.1 and 1.5, indicating that individual crests may assume forms that
differ from that of the solitary wave. Furthermore, abrupt changes in
beach profile may lead to breaking in deeper water, very steep storm
waves break in deeper water, and extremely flat waves break in shallower
water. There is little evidence of loss of energy due to friction before
breaking takes place. On beaches of slopes between 1:20 and 1:100 the
maximum loss appears to be less than ten per cent of the original wave
energy.

When waves approach a straight coast at an angle the wave crests are
turned, the part of a wave that first reaches shallow water is slowed down,
with the result that the crest swings in toward the coast and may advance
nearly directly toward the coast before breaking. This bending or refrac-
tion of the wave leads to a “stretching’’ of the wave crest and therefore
to a reduction in wave height. On an irregular coast the refraction will
lead to stretching of wave crests in some localities and shrinking in others.
Local variation in breaker height is therefore closely related to the bottom
topography, but the effect of this depends upon the direction from which
the waves advance and upon their period.

Certain phenomena that appear to be associated with breakers are
not yet understood. The existence of undertow has not been satis-
factorily explained, and is doubted by some observers (Shepard and
La Fond, 1939). The rip currents which flow away from the coast
through the breakers and which may carry swimmers far out from the
beach also have not been fully explained, but it is probable that these
currents are associated with surface transport of water against the beach
by the waves (Shepard et al, 1941).

The destructive effect of breakers has been the subject of intensive
studies, particularly by engineers, but cannot be discussed here. Inter-
ested readers are referred to some of the general works that are included
in the list of literature.
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Long Waves

STANDING WAVES 1N Bavs. SeicHEs. In bays, standing waves may
develop which are similar to the oscillations in lakes. These waves are
known as seiches, and were first studied by Forel (Defant, 1929; Thorade,
1931) in the Lake of Geneva. They are free oscillations of a period that
depends upon the horizontal dimensions and the depth of the lake and
upon the number of nodes of the standing wave. The wave length will
be of the same order of magnitude as the length of the lake, and, as the
length of a lake is usually great compared to the depth, the waves will
have the character of long waves.

A long wave that proceeds in water of constant depth in the positive
or negative z direction must satisfy the equations of motion and con-
tinuity in the form (p. 425 and p. 432)

dy,  Ov, an an oV, ¢
if frictional forces and the deflecting force of the earth’s rotation are
neglected. Here dv./dt has been replaced by dv,/dt, because in the case
of a long wave dv,/dz can be considered a small quantity. The vertical
displacement of the surface is called 7, and d4/dz is therefore the inclina-
tion of the free surface. Introducing the horizontal displacement £, one
has v, = 0£/dt, and the above equations take the form

9%k

5 3
- pdt (XIV, 10)

ox

These equations are satisfied if

£ = asin (a't + i e): o iah%cos (at + %:c —I—e), (XIV, 11)

c

where the velocity of progress of the wave, ¢ = d/k, 18 equal to \/gh.

Equations (XIV, 11) define two waves that progress in opposite direc-
tions. The equations of motion are therefore also satisfied by a super-
position of two waves that proceed in opposite directions and for which
the velocity of progress is ¢:

£= & + £ = 2asin gx cos (ot + € (XIV, 12)
and

n=m-=+n= —2ah% cos % x cos (of + ¢€). (X1V, 13)

For a free oscillation the antinodes of a wave in a closed basin must
be located at the ends of the basin, where only vertical motion can exist.
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If the length of the basin is I and is measured from z = 0, the boundary
conditions can be written x =0, £ =0, and z =1, £ = 0. The first
condition is fulfilled by (XIV, 12), and the second is fulfilled if the period
of oscillation is such that

o
-1 = nm,
c

where n is a positive integer greater than zero. Because ¢ = 27/T and

ra 1 2

=
" +/gh

It is readily seen that n is the number of nodes of the standing wave.
The standing wave of the longest period is the one that has only one
node and the period

(XIV, 14)

T, ik (X1V, 15)
This relation, derived by J. R. Merian in 1828, is known as ‘“ Merian’s
formula.”” Infig. 128, (p. 517), is shown a standing wave with two nodes.
In applying this very simple theory to actual oscillations of the water
in lakes, considerable modifications must be made, because the shape of a
lake deviates very much from that of a rectangular basin of constant
depth. Crystal (Defant, 1925) has developed the theory of standing
waves in basins of different shapes, and more recently Defant (1925) has
introduced a convenient method of determining the possible periods of
oscillation in lakes by means of a numerical integration of the hydro-
dynamic equations. Defant’s method can be directly applied to lakes
or bays of any shape and permits the computation of periods, the relative
magnitudes of vertical displacements, and the position of nodal lines.
Defant’s reasoning as presented in his book of 1929 will be briefly sum-
marized here. ;
In a basin of variable width b, and variable cross-section area S, the
equations of motion and of continuity can be written in the form
2
- gl - —%9%9 (XIV, 16)
The vertical and horizontal displacements are supposed to vary
periodically:
27 2m
£ = £(z) cos 7 b n = q(z) cos T t; (XIV, 17)
Replacing the differentials in equation (XIV, 16) by the small quantities
A¢ and Ay, one obtains

472 14
Apg = g7 AzxE, E= — gj; nbdz. (XIV 18)
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These equations can be used for a stepwise computation of the displace-
ments if it is possible to determine independently an approximate value
of the period of the free oscillations. If then one cross section after
another is considered, and if these cross sections are placed close together,
it can be assumed that the changes of the displacement from one cross
gsection to the next are linear, in which case equation (XIV, 18) can be
written

ﬂ2=ﬂ1+a%§2’ 522""“**‘““““‘!“—_[q1+(111+a%1)v2];
Sz( avg)

14 1S,
(XIV, 19)

qg=t1_'1+11““:"5—n—2”2,

where & = (4x2/gT?) Az and where the quantities indicated by subscript 1
and subscript 2 represent the values for two successive sections, and
where v; is the surface area of the sea between the sections 7 — 1 and <.
The quantity go is equal to zero.

The period T for any given basin can be computed in the following
manner. First, an approximate value of T is found by means of formula
(XIV, 15), introducing the average depth of the basin. The result is an
approximate value of . At the end of the basin at which the computa-
tion begins (z = 0), the horizontal displacement must be zero, and for
the vertical displacement an arbitrary value can be selected. In this
manner the boundary condition at the one end is fulfilled. By means of
equation (XIV, 19), one can now, step by step, compute the displace-
ments for all cross sections of the basin, and, if the approximate period
that was derived by means of formula (XIV, 15) is correct for the simplest
seiche, the computation must give the value £ = 0 at the other end of
the lake in order to fulfill the boundary condition. The computed value
will usually differ from zero, and hence it is necessary to select another
value of the period and to repeat the entire computation. If this new
value does not lead to a correct result, one has to select a third one, but
as a rule it is possible to select the first two values of the period in such
a way that the correct one lies between them and can be determined by
suitable interpolation. The final result will give relative values of the
displacements and the exact locations of the nodal line. In a similar
manner, one can find the period of an oscillation with two nodal lines
and fix their location. Figure 135 shows the computed displacement of
seiches in Garda Lake, according to Defant.

So far, only lakes have been considered. In a bay that is in open
communication with a large body of water, horizontal flow can take place
through the opening. For a rectangular bay the simplest form of a
standing wave will be that which has a nodal line across the opening and



WAVES AND TIDES 541

an antinode at the closed end of the bay. Therefore the total length of
the bay is occupied by only one fourth of a wave length (fig. 128), and
the corresponding period is

4]

Vgh

Standing oscillations of shorter periods are also possible, but one of the
nodal lines must always be 150 . :
located at the opening of

T = (XIV, 20)

the bay. 1004 -
If the opening of the 7

bay is very wide, it is 501 .

necessary to introduce a A

correction that increases © y

the period. The increase A

is 32 per cent, according to 30 ¢ <

Rayleigh (Thorade, 1931),
if the width of the bay 'S
equals the length, but is re-
duced to about 10 per cent
if the width is one tenth of
the length. Actual experi- ° 7
mental verification of this
theory has not been ob-
tained. Z

In a canal that is open
at both ends, standing i :
waves can also be present, '°% 10 20 30
but these must be such Fig. 135. Oscillations of the Garda Lake,
that nodal lines are located according to Defant. Relative values of the
s the two openinga of the sl ad hirsonil amplided ary nduied
canal. The longest possi- ogillation with ome node of period T; = 39.8
ble period of a standing minutes;lower curves marked B show oscillation of
oscillation is therefore the tW° nodes of period T3 = 22.6 minutes.
same as the period of a lake of similar shape, but in a lake antinodes are
located at the ends of the lake, whereas in a canal nodes are found at the
ends.

The period and the character of the oscillation in bays or canals can
be found by Defant’s method, taking the proper boundary conditions
into account. In a bay the vertical displacement must be equal to zero
at the opening, and in a canal it must be equal to zero at both openings.

Seiches occur commonly in bays, as is evident from records of tidal
gauges in such localities. Studies of oscillations in bays along the coast
of Japan have been conducted by Honda, Terada, Yoshida, and Isitani




542 WAVES AND TIDES

(Defant, 1929), who have examined records of tidal gauges and have con-
ducted experiments on models. Such experiments have given results in
good agreement with observations in cases where the computation of the
possible oscillations is difficult, owing to the complicated configuration of
the basins. Figure 136 shows the streamlines of a possible oscillation
of the waters in San Francisco Bay according to the experiments by
Honda et al. This oscillation, which
is characterized by two nodal lines,
one near the Golden Gate and one
running north-south across the San
Francisco Bay, appears to be easily
produced and has a period of 38 to
48 minutes.

The causes of such oscillations
are not fully understood. It should
be observed, however, that only a
small amount of energy is needed for
producing standing oscillations in a
body of water and for maintaining
them. Very weak periodical vari-
ations in wind or barometric pressure
may therefore produce seiches if
these variations are of a period

Fig. 136. Oscillation with three length corresponding to one of the
nodes in San Francisco Bay, accordingto  possible free oscillations. It has
;’;ﬂeﬁrﬁ:ﬂ‘s by Honda, Terada, Yoshida, ;144 heen shown by J. Proudman and

; A. T. Doodson (Defant, 1929) that a
sudden change of wind or a rapid variation in pressure may cause oscilla-
tions that will gradually die out because of friction.

Seiches do not appear to be confined only to bays, but occur fre-
quently on practically open coasts. As an example, Patton and Marmer
(1932) mention that at Atlantic City, on the open coast of New Jersey,
heavy winds will frequently bring about a seiche oscillation with a period
of about 15 minutes. They assume that this seiche represents an oscilla-
tion of some part of the wide embayment of the coast between Nantucket
Island and Cape Hatteras. The theory of such seiches has been devel-
oped by Hidaka (1935).

Drstructive Waves. The waves that occasionally inundate low-
lying coasts and cause enormous damage are considered here, although
they are commonly known as “tidal waves.” However, they have
nothing in common with the tides, but the name ‘‘tidal wave’’ has become
so firmly established in the English language that the popular use will
probably be continued in spite of the unfortunate confusion to which it
gives rise. The destructive waves known as tidal waves are caused by
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earthquakes or by severe storms blowing against the coast, for which
reason it is necessary to distinguish between earthquake waves and storm
waves, the former being real waves and the latter being not even related
to waves.

Waves in the sea caused by earthquakes are of two different types.
In the first place a submarine earthquake may produce longitudinal
oscillations that proceed at the velocity of sound waves. When reaching
the surface, such longitudinal oscillations will be felt on board a ship as
a shock that violently rocks the vessel. The shock may be so severe that
the sailors believe their vessel has struck a rock, and several such reported
“rocks” were indicated on early charts in waters where recent soundings
have shown that the depth to the bottom is several thousand meters.
There are many ship reports dealing with shock waves, particularly from
regions in which seismological records show that submarine earthquakes
are frequent. Explosion waves of this character usually occur as inde-
pendent phenomena, but occasionally they are accompanied by the
release of large amounts of gases that rise toward the surface and may
lift the surface up like a dome, thus producing a transverse wave that
behaves like any other gravitational wave. Observations of this kind
of waves are rare, but it is possible that ships which have been lost at sea
have been completely destroyed by such enormous disturbances. A
wave of this nature spreads out from the place where it is formed and
decreases in amplitude. By the time it reaches the coast, it has usually
become so reduced that it does not cause much damage.

Destructive waves caused by earthquakes, dislocation waves, or
“tsunamis’ are in general associated with submarine landslides which
directly create transverse waves. These waves may reach enormous
dimensions both in the open sea and near the coasts, and they proceed as
ordinary long gravitational waves. Many records exist of such waves
which, near their origin, have caused enormous damage by completely
inundating low-lying areas and which have subsequently traversed the
entire Pacific or Atlantic Ocean. Thus, the great damage caused by the
earthquake at Lishon on November 1, 1755, was mainly due to the gigantic
wave which was set up and which continued across the Atlantic Ocean,
reaching the West Indies as a “tidal wave’” 4 to 6 m high. In Japan,
similar earthquake waves have on many occasions brought great destruc-
tion and have led to the loss of many lives. As an example, it may be
mentioned that in 1703 more than 100,000 persons lost their lives when
the coast of Awa was flooded. Among the most discussed waves are
those that accompanied the eruption of the voleano Krakatao in the
Sunda Strait on August 26 and 27, 1883. Several waves occurred after
the different eruptions, and the highest ones caused great devastation on
some of the East Indian Islands, where more than 36,000 persons lost
their lives and where the waves in certain localities must have reached a
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height of 35 m. These waves did not enter the Pacific Ocean, but crossed
the Indian Ocean and could be traced up the Attantic Ocean, where they
were recorded as far north as the English Channel, having traveled a
distance corresponding to half the circumference of the earth in 3214 hours.
In the English Channel their height had decreased to a few centimeters.

These waves proceed, as already stated, as long gravitational waves
and their velocity of progress should therefore, over a uniform bottom,
be equal to A/gh. Where the depth to the bottom is variable, the velocity
of progress will be somewhat less than /gh» where h, is the average
depth, but it has been found that the velocity of progress is smaller than
should be expected even if variations in depth are considered. In spite
of this circumstance, the study of the rate of propagation of these waves
served to give an idea of the average depth of the ocean prior to the time
of deep-sea soundings. Thus, in 1856, A. D. Bache computed the average
depth of the oceans to be about 4000 m, whereas Laplace had assumed
an average depth of about 18,000 m.

The period length of tsunamis varies between 15 and 60 minutes
(Kriimmel, 1911, Gutenberg, 1939). Where the depth to the bottom is
200 m, the velocity of progress of a long wave (v/gh) is 44.2 m/sec, and
with a period length of 30 minutes the wave length is 79.5 km. The
corresponding maximum particle velocity is independent of the wave
period and equals A/gh no/k (p. 565), where 7, is the amplitude of the wave
and } is the depth to the bottom. With the above numerical values the
maximum particle velocity becomes equal to 0.22n,. The energy of the
wave per unit area of the surface is }4gno?, and, thus, equal to that of
surface waves or tides of the same amplitude.

Destructive “waves” caused by wind are of an entirely different
nature. In this case one has to deal, not with the effect of a wave, but
instead with inundations which are caused by the ocean waters being
swept up against the coast by violent storms. Abnormally high water
levels caused by strong winds are frequent on many coasts, but fortu-
nately the sea level rarely rises so much that great damage occurs. The
most destructive storm “ wave’ known in the history of the United States
is that which practically destroyed Galveston on September 8, 1900.
A West Indian hurricane approached the coast of the Gulf of Mexico,
where at Galveston the barometric pressure fell from 996.2 millibars,
(29.42 inches) at noon to 964.4 millibars (28.48 inches) at 8:30 p.M. At
the same time the wind velocity increased to 45 m/sec (100 miles per
hour) at about 6:00 .M., when the anemometer was broken to pieces.
It has been estimated that the average wind velocity between 6:00 and
8:00 p.n. must have been about 55 m/sec, or 120 miles per hour. During
the day of September 8 the water rose steadily but slowly until the wind
had reached hurricane force, when a much more rapid rise took place.
TIn the evening the water level was nearly 5 m (15 feet) above mean high
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water, and large districts of the city were flooded. Nearly 6000 persons
were drowned, and the property damage ran into tens of millions of
dollars.

The hurricane that on September 21, 1938, struck the coast of New
England brought an even higher water level in many localities, but did
not cause so much loss of life. At Buzzard’s Bay the highest water level
ranged from 4 to 5 m above mean low water, and at Fall River it was
reported that ‘“the water came up rapidly in a great surge,”’ rising to
about 6 m above normal. More than 600 persons lost their lives in the
hurricane, and the property damage was estimated at $250,000,000 to
$330,000,000, although only part of this damage was due to destructive
waves (Tannehill, 1938).

Tides

The longest waves known in the ocean are those associated with the
tidal movement, which manifests itself on the coast by the rhythmic rise
and fall of the water and, particularly in sounds and narrow straits, by
the regularly changing tidal currents. The wavelike character of the
phenomenon is readily recognized by means of an automatic tide gauge,
which records the actual sea level as a smooth curve with alternating
maxima and minima. It is also recognized in connection with tidal
currents in a strait, because these currents show a regularly alternating
motion characteristic of waves. The rise and fall of the water and the
accompanying currents should therefore be dealt with together, because
they are only different manifestations of the same phenomenon. How-
ever, for practical reasons, it is of advantage to deal with them sepa-
rately and, following common usage in English, to refer to the rise and
fall of the water as the “tide,” and to the accompanying currents as
‘“tidal currents.”

Since a knowledge of tides is of particular value to navigation, there
exists an enormous literature dealing with the phenomenon, partly in
the form of theoretical studies, partly in the form of extensive series of
observations and discussions of them, and partly in the form of popular
treatises. The tidal currents have also been dealt with extensively,
although they are less readily observed than the tides and even more
difficult to examine theoretically. The literature on tidal currents, how-
ever, is also very large. Only a brief outline of the tidal theories
and of the character of tides and tidal currents will be presented here.
(Reference made to Darwin, 1911; Kriimmel, 1911; Marmer, 1932.)

Tipe-PropuciNng Forces. Tides are caused by the attraction of the
moon and sun. In a given locality the tide is of a complicated character,
but any tide can be shown to consist of a number of partial tides, each of
which is related to the motion of the earth relative to the moon and the
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sun. In order to show the existence of these tides, it is necessary to
discuss the character of the forces that produce tides.

Considering the moon and the earth only, let the mass of the earth
be equal to unity, and the mass of the moon equal to m. The gravita-
tional attraction of the moon at the center of the earth is then propor-
tional to m/r?, where r is the distance from the center of the moon to the
center of the earth (fig. 137). This distance remains constant, on an

average, and the attraction of the moon on the earth must, therefore,
EARTH

MOON

CENTRIFUGAL GRAVITATIONAL
FORCE ATTRACTION

Tig. 137. Schematic representation of the gravitational attraction between the earth
and the moon and the centrifugal force which balances the attraction.

on an.average, be balanced by a centrifugal force that is directed away

from the moon and is also proportional to m/r?

The centrifugal force acting on any particle on the earth is the same,
but the attraction of the moon varies. Consider a point at the surface
of the earth lying on the line which joins the centers of the two bodies.
At this point the attraction of the moon is proportional to m/(r — p)?,
where p is the radius of the earth. The difference between the attraction
of the moon at this point and the centrifugal force is proportional to
m/(r — p)? — m/r% or to 2mp/r?, because p/r is a small quantity. The
numerical values are m = 1/81.45, r = 60.34p. Owing to this difference
the moon’s attraction tends to raise the surface of the earth at the point
under consideration, but at the same point the attraction of the earth
acts and is proportional to 1/p?. Thus the ratio between the disturbing
force of the moon and the attraction of the earth is equal to 2mp?/r® =
1.176 X 10~". The attraction of the earth, on the other hand, equals
the acceleration of gravity, and thus the tide-producing force of the moon
is only about 1.176 X 107 times the acceleration of gravity; that is, at
the point under consideration the acceleration of gravity is reduced by the
amount 0.000115 cm/sec?.

Consider next a point at the surface of the earth but opposite to the
moon. At this point the attraction of the moon is less than the centrifugal
force and is proportional to m/(r + p)2. The disturbing force is again

found from the difference

m m“__' P
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where the minus sign indicates that the force is directed away from the
moon. Thus, the disturbing force is of the same magnitude as the one
that was first considered. It is also directed away from the center of
the earth and reduces the acceleration of gravity at that point by
0.000115 cm/sec?.
Now take a point at the surface of the earth at right angles to the line
_joining the centers of the moon and of the earth. At this point the
attraction of the moon is of the same magnitude as the attraction at the
center of the earth, m/r%, but is directed, in fig. 138, along the line PM.

Fig. 138. (A) Schematic representation of the tide-producing forces in a plane
through the line joining the centers of the earth and the moon. (B) Distribution of
horizontal tide-producing forces over the earth (according to G. H. Darwin). The
moon is at zenith above the point marked Z.

The centrifugal force is parallel, however, to the line EM, and the result-
ant of these two forces is directed toward the center of the earth and is
proportional to mp/r®. In this case the disturbing force leads to an
increase in the acceleration of gravity of 0.00058 cm/sec?,

If a point were selected at random on the surface of the earth, one
would find that generally the disturbing force forms an angle with the
surface of the earth different from 90° and can therefore be considered
as having a vertical component and a horizontal component along the
earth’s surface (fig. 138). The complete theory leads to the following
equations for the vertical and horizontal components of the disturbing
forces:

Vertical component: 3m£i (cos2 0 — %)
Horizontal component: BmT% sin 8 cos 6. (XIV, 21)

Here 6 is the angle between the line joining the centers of the moon and
the earth and the line from the center of the earth to the point on the
earth’s surface that is being considered. In fig. 138 are shown, according
to G. H. Darwin (1911), the distribution of the horizontal components
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of the disturbing forces over the surface of the earth and their relative
magnitudes.

Exactly similar reasoning can be applied if one considers the sun and
the earth, but for numerical computations the mass of the sun and the
distance between the sun and the earth must be entered. Using the same
units as before, one finds that the mass of the sun is equal to 333,400 and
that the distance is 23,484p. With these values, one finds that the
maximum tide-producing force of the sun is only about 0.46 times that
of the moon. The greater distance between the sun and the earth more
than balances the effect of the greater mass of the sun.

By considerations of this nature, it is easily shown that no other
heavenly body can produce tides on the earth. The closest planets are
too small to have any effect, and the large planets are too far away.

The motion of the sun and the moon relative to the earth is so compli-
cated that the system of tide-producing forces changes greatly in the
course of time, but the patterns are repeated in regular sequence.

From the graphs in fig. 138 it is seen, for instance, that the field of
the moon’s tide-producing forces is symmetrical with respect to the poles
of the earth if the moon stands above the Equator—that is, when the
declination of the moon is zero. In this case, when the earth rotates
around its axis, the components of the tide-producing forces will in all
latitudes show two equally high maxima and two equally low minima
during 24 lunar hours, a period that represents the time interval between
two culminations of the moon, or 24.84 solar hours. To an observer on
the earth the field of tide-producing forces appears to rotate around the
earth in 12 lunar hours. The declination of the moon varies, however,
during one month from about 28°8 to about 28°N, meaning that at the
greatest southern declination the moon passes through zenith in about
lat. 28°S, and at the greatest northern declination the moon passes
through zenith in about 28°N. In these positions of the moon the field
of tide-producing forces is no longer symmetrical with respect to the
poles of the earth. At the Equator the two diurnal maxima of the tide-
producing forces still remain equal, but in all other latitudes one of the
maxima will be less pronounced than the other during a complete revolu-
tion of the earth. To an observer on the earth the field appears to be
composed of two fields, one that rotates twice in 24 lunar hours, and one
that rotates once in the same time. Instead of continuing these reason-
ings, which would become very involved owing to the many variations
in the relative positions of moon, sun, and earth, one can arrive at a
complete picture by introducing a series of fictitious heavenly bodies that
will each bring about a symmetrical field of tide-producing forces and by
considering the total field as composed of all of these partial fields.

Assume first that there is an ideal moon that always remains in the
equatorial plane and at any locality passes the upper meridian at inter-
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vals of 24.84 hours, or one lunar day. As already stated, the field of
tide-producing forces due to such a moon would be symmetrical in respect
to a plane through the poles of the earth. Relative to an observer on the
earth, this field would have identically the same appearance after one half
Iunar day, or after 12.42 hours. The observer could represent the hori-
zontal and vertical components of the tide-producing forces by means of
equations of the type f = F sin (nf — «), where F would be the ampli-
tude of the tide-producing force; n would represent the so-called angular
velocity of the tide, and x would be a constant depending upon the value
of f at the time ¢ = 0. One hour is used as the unit of time, and, since
the period in this case was 12.42 hours, the angular velocity will be

_360°

T o
= oh 28.984°.

n

Similarly, one could introduce other fictitious bodies, but the resultant
angular velocities of the principal components of the tide-producing
forces can all be derived from a small number of characteristic velocities:

1. The angular velocity of earth relative to the stars, g = 15.0411°,

2. The angular velocity of the rotation of the moon around the earth,
s = 0.5490°.

3. The angular velocity of the movement of the long axis of the
elliptic orbit of the moon, which completes one rotation in 8.85
vears, p = 0.0046°.

4. The angular velocity of the motion of the earth around the sun,
e = 0.04107°.

The angular velocities of the different components which together
form the actual field of tide-producing forces can be obtained by com-
binations of these. Thus the angular velocity of the field due to the ideal
moon that was first considered is 2(g — s) = 28.984°.

The complete analysis makes it possible to compute coefficients that
are related to the intensities of these different partial fields. The signifi-
cance of these coefficients will be explained. Analysis of tides shows that
to these partial fields there are corresponding partial tides that have all
received characteristic names and symbols. Table 70 contains the names
of the more important semidiurnal, diurnal, and long-period partial tides,
their symbols, their periods and angular velocities, and their so-called
coefficients.

Thus, the components of the tide-producing forces in a given latitude
can be represented by equations of the form

P = Mi(p) sin [2(g — 8)t — x1] + S2(¢) sin [2(g — e)t — x4
4 Ki(p) sin [2gt — &g] + * - - (X1V, 22)
+ Oi1(p) sin [(g — 28)¢ — ka] + Ki(p) sin [gt — Knga] + = - .
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We write Ma(¢), Sa(¢), and so on, in order to indicate that the com-
ponents of the tide-producing forces are functions of latitude. It should
be borne in mind that we are so far dealing with forces which, referred
to a coordinate system on the earth, have three components, one vertical
and two horizontal, and that equation (XIV, 23) tells only that each of
these components can be represented as a sum of harmonic terms, the
period lengths of which are determined by considering the relative
motions of moon, sun, and earth. The next question is how these forces
bring about the tides.

TasLE 70

MOST IMPORTANT COMPONENTS OF THE TIDE-PRODUCING FORCES
(According to Schureman, 1924)

Angular velocity
Name of corresponding Period Coeffi-
partial tide Bymbol in hours I cient
Symbol n degrees
per hour
SEMIDIURNAL:
Principal lunar.......... M. 12.42 | 2(g — 8) 28.9841 .4543
Principal solar....... .. .. S 12.00 | 2(g — e) 30.0000 .2120
Larger lunar elliptic. ... .. N. 12.66 | 29 — 3s + p| 28.4397 | .0880
FOmipalar.. .2 i ik e 11.97 | 29 30.0821 .0576
DIURNAL:
Bl L e A e e S Lo 23.93 | g 15.0411 .2655
Principal lunar.......... 0, 25.82 |g — 28 13.9430 .1886
Principal solar...........| P 24.07 |g — 2e. 14,9589 .0880
LONG-PERIOD:
Lunar fortnightly........ M; 327.86 | 2s 1.0980 .0783
Lunar monthly.......... M., 661.30 |s — p 0.5444 .0414
Solar semi-annual...... .. B 2191.43 | 2¢ 0.0821 .0365

Tueories oF Tipes. In the preceding section the tide-producing
forces were discussed, but no reference to the actual tides was made
except in the content of table 70, in which were listed the partial tides
corresponding to the more important tide-producing forces. Two differ-
ent theories have been advanced as to how these forces can bring about
tides, of which the first, the equilibrium theory, is mainly of historical
interest and has been replaced by the dynamic theory. The equilibrium
theory, which was first developed by Newton, is so often referred to,
however, that its principles should be mentioned.

Assume first that the rotation of the earth relative to the moon is
such that the same side of the earth always faces the moon. In this
case the field of tide-producing forces, which was derived on p. 547 and
shown in fig. 138, would remain stationary relative to the earth. The
tide-producing forces would lead to a permanent reduction of the accelera-
tion of gravity at the points of the earth nearest to and farthest away
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from the moon, and to a permanent increase of the acceleration of gravity
in the plane at right angles to the line joining the centers of the two bodies.
If the earth were completely covered by water, the free surface of the
water would be in equilibrium only when raised slightly at the points
nearest to and farthest away from the moon and when lowered slightly
halfway between these two points.

Since the reduction of the acceleration of gravity at the points nearest
to and farthest away from the moon is 2mp/r?, the value of the accelera-
tion of gravity is in the same units: 1/p? — 2mp/r3. This reduced value
is found at a small distance k above the undisturbed surface, where the
acceleration of gravity is 1/(p + h)? = 1/p*> — 2h/p®. Therefore

3
h =T = 35.6 cm.

If at the point nearest to and farthest away from the moon the undis-
turbed surface were raised to this height, there would be equilibrium,
and the greatest elevations of the new equilibrium surface above the
undisturbed surface would be 35.6 em. Similarly, the greatest depres-
sions would be half that amount, or 17.8 cm.

The equilibrium theory assumes that these flood protuberances are
actually formed and that the highest portions of the protuberances lie
at the points nearest to and farthest away from the moon. However,
the earth does not always have the same side turned toward the moon,
but rotates relative to the moon once in 24.84 hours. Each flood pro-
tuberance therefore appears to travel once around the earth in 24.84
hours, and, because there are two protuberances, the time interval
between the passages of flood protuberances will be 12.42 hours. Similar
flood protuberances will be caused by the sun and by the irregularity of
the motion of the moon and the sun, and the actual tides should appear
as the combined result of such a series of protuberances, the heights of
which would be proportional to the coefficients in table 70. The obvious
criticism that can be directed at this thebry is that the movement of a
flood protuberance over the surface of the earth cannot take place unless
water masses actually change position, but consideration of the move-
ment of the water has been completely disregarded. Other objections
to the theory need not be discussed here.

The dynamic theory is based on the fact that only the horizontal tide-
producing forces are of importance to the movement of the water. The
vertical tide-producing forces are unimportant because they can be con-
sidered as consisting of very small periodical variations of the acceleration
of gravity. It has previously been shown that the distance between
isobaric surfaces in the sea depends upon the acceleration of gravity, and
it is evident that variations of the latter must lead to variations of the
distances between isobaric surfaces. Where the depth to the bottom is
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about 5000 m, the variations in gravity due to the tide-producing forces
would, however, lead only to a maximum variation of about 0.085 ¢cm in
the distance between the sea surface and the 5000-decibar surface. Since
this variation is far too small to be observed as a tide, the horizontal tide-
producing forces must be considered. The problem then consists in
determining what types of motion in the oceans will arise under the
influence of periodically varying horizontal forces that are distributed
over the ocean in a given manner. From this point of view the tides
must be considered as waves that are induced by rhythmical forces and
therefore have the same periods as the forces.

The general equations of the dynamic theory, which were developed
by Lagrange, lead to problems mathematically so difficult that they have
not yet been solved so far as the tides of the oceans are concerned.
Instead, the application of the dynamic concept has followed two differ-
ent lines. In the first place, the theory of tides in basins of defined
geometrical shape has been developed, particularly by Proudman and
Doodson; in the second place, tides in natural basins have been studied
mainly by Sterneck and Defant by methods of numerical integration of
the hydrodynamic equations. Both methods have helped toward an
understanding of the observed phenomena, but here only the latter
approach will be dealt with, because it leads to direct comparisons
between theoretical results and observed conditions, and because it does
not require any lengthy mathematical presentation.

Tides in relatively small bodies of water that are in communication
with the open sea have much in common with seiches, and can therefore
be discussed in much the same manner. The tides, however, differ from
the seiches in the respect that they are forced oscillations of periods which
must coincide with the periods of the impulses by which they are main-
tained, whereas the periods of the free oscillations depend only upon the
geometrical shape of the bay.

The similarities and differences between tides and seiches are brought
out by considering the oscillations in a long, rectangular bay of constant
depth. Any wave in such a bay must fulfil the equations of motion and
continuity. It was shown on p. 538 that, when the earth’s rotation and
friction are neglected, these equations are satisfied by

¢ = asin c—(: z cos (ot + €), n = —-ah% cos%x cos (ot +¢€). (XIV, 23)

These equations must always hold, and, in addition, certain boundary
conditions must be satisfied. These conditions depend upon whether
one considers a free oscillation or an oscillation of the same period as an
oscillation of the body of water with which the bay communicates,
a cooscillation. In the case of a free oscillation in a bay of length | the
boundary conditions werez = 0, { = 0,andz = l,7 =0, and from these
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the period of the longest free oscillation was found, T, = 4l/c. 1In the
case of a cooscillation in a bay the period is that of the tide in the open
sea, T. = 2r /¢, and the boundary condition takes the form z = 0,¢£=0,
x =1,n = Z cos (ot + ¢), or, at the closed end of the bay, the horizontal
displacements are zero, and at the open end the vertical displacements
coincide with those in the adjacent sea. The latter boundary condition
leads to a determination of the arbitrary constant, a:

1
a= —z,f—; - (XIV, 24)
cos - [
c
Putting
e (XIV, 25)
i cr 4

and introducing a new variable,y = /I, equations (X1IV,23) are obtained
in the form ;
¢ molg b B0 06 09y

~ " “hrv cos Ly BoeF )

=7 208 Jhrry cos (ot + ¢€) v
: cos Yoy =

These equations represent the cooscillating tide. They show that if », the
ratio between the periods of the free and the tidal oscillations, has the
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Fig. 139. (A) Character of cooscillating tides
in bays corresponding to different values of », (B)
Character of independent tides in bays correspond-
ing to different values of ». (According to Defant.)

values » = 1,3, 5 . . . , the amplitudes of the cooscillating tide become
infinite. In this case resonance occurs. It is also evident that the num-
ber of nodes of the forced wave depends upon the value of ». Fig. 139A
(Defant, 1925) shows the character of the cooscillating tide in such a
basin as has been dealt with for different values of ». It should be
observed that Defant introduces a value of » which is one half of the
value defined by (XIV, 25).
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For the-independent tide which is produced directly by the tidal forces,
it is necessary to add on the right-hand side of the equation of motion
(XIV, 9) a periodic force: z = f cos (¢t + ¢). With the boundary con-
ditionsz =y =0,(=0,andz =l ory=1,7= 0, one obtains

e aunn e it
t= oo e sin 7 vy sin 5 7v (1 5 y) cos (ot + ¢€),
i (XIV, 27)
_%sm}é«v(y—l)cos(t_i_ )
T gy cos L4y > b
Again, resonance occurs if » = 1, 3, 5, . . . ; otherwise the number of

nodes depends on the value of ». Fig. 139B (Defant, 1925) shows the
character of the independent tide corresponding to different values of ».

So far, a rectangular bay of constant depth has been considered. For
a bay of irregular shape and varying depth, one can start from the equa-
tions of motion and continuity in the form (XIV, 16) and can determine
the character of the cooscillating and the independent tides by means of
a numerical integration similar to the one developed by Defant (p. 539)
for determining the free oscillation of the water in a basin (Defant, 1925).
In all cases the character of the forced oscillation depends upon the rela-
tion of the period of the forced oscillation to that of the free. It can be
shown that in general the increase of the range of the tide due to narrowing
and shallowing is relatively small, and that very high tides at the ends
of bays are, as a rule, a result of resonance.

In the preceding discussion, tide-producing forces have been con-
sidered which act in the direction of the long axis of the basin, and it has
been assumed that at any given time the force is the same at all cross
sections. If the basin is large, it may have to be taken into account that
transverse forces exist, causing transverse oscillations, or that at a given
time the force varies in the longitudinal direction.

The introduction of friction leads to further complications. In a
free oscillation the period is increased by the effect of the friction, but
the period of the forced oscillation must always remain equal to that of
the force and cannot be altered by friction. The result is that no com-
plete resonance can develop, because the greater the amplitude of the
wave becomes, the greater is the effect of friction and the greater the
increase of the period of the free oscillation. The ratio » can in these
circumstances never remain at the value, 1, 3,5, . .. ,butcanstay near
one of these values.

Another effect of friction alters the character of the forced waves.
In the absence of friction the cooscillating tide can be considered as a
wave in a basin of constant depth which proceeds with constant ampli-
tude and is totally reflected at the closed end of the bay. In the presence
of friction the amplitude of the ‘“incoming” wave decreases in the direc-
tion of progress, and the reflected wave has therefore a smaller amplitude
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than the incoming. The result is that the oscillation loses its character
of a simple standing wave, but can instead be considered as composed
of two standing waves of a phase difference of /2 which are superimposed
on each other. In the extreme case in which the incoming wave is com-
pletely destroyed by friction, so that the amplitude at the closed end is
zero, the cooscillating tide has the character of a progressive wave that
is subjected to extreme damping (p. 575).

Even greater complications arise when the effect of the rotation of
the earth is considered. Such consideration is necessary in most cases,
since a comparison of the magnitude of the acting forces shows that the
deflecting force cannot be neglected when dealing with tidal phenomena,
because their period length is of the order of magnitude of a pendulum
day (p. 520).

In order to get some idea of the modifications that arise owing to the
rotation of the earth, it is necessary to return to the complete equations
of motion and to consider not only the vertical and horizontal displace-
ments, but also the horizontal velocities to which no attention has been
paid so far. If the depth is constant, if friction is neglected, and if
v = 2w sin ¢, the equations of motion and continuity take the form

0, o an vy w0
. gy g g

sl —k(a_‘ir 9o,
e 6x+ay'

Two solutions of these equations can easily be written. Consider
first an infinitely long canal of constant width b. If the z axis is placed
in the direction of the canal, the boundary conditions y = 0, v, = 0, and
y = b, v, = 0 must be fulfilled, because at the walls of the canal the
motion can be in the x direction only. With these boundary conditions,
one obtains in the Northern Hemisphere

(XIV, 28)

P

¥, = \j% 1, vy, = 0, = 'rrue_c_%r cos (at = gm)» (XIV, 29)

where, as previously, ¢ = +/gh.

This solution, which was first given by Lord Kelvin (Lamb, 1932),
defines a wave, the Kelvin wave, which proceeds in the z direction with
the velocity ¢ and is characterized by great amplitudes on the right-hand
side and by small amplitudes on the left-hand side. At high water, when
the current flows in the direction of progress, the wave crest slopes down
from right to left, and the component of gravity acting down that slope
is exactly balanced by the deflecting force of the earth’s rotation acting
in the opposite direction. At low water the directions of the slope and
the current are reversed. The forces again balance each other, and the
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same is the case at any time between high and low water and between low
and high water.

Another solution, given by Sverdmp (1927), is applicable to a wave
that proceeds in an unlimited sea, provided that ¥ = 2w sin ¢ can be con-
sidered constant:

1 82 i
UZIJ%I—:?ﬂuGOS(Ut—%; )} vy=J%mn051n(o't—-%x);
7 = 70 COS (crt — % x), (X1IV, 30)
where s = v/o and where now

RN (X1, 31)

These equations define a wave that has horizontal crests like an
ordinary long wave, but a velocity of progress that has been increased
in the ratio 1/4/1 — s%. At the same time the motion of the water
particles is no longer alternating back and forth, but is rotating, because,
in addition to the velocities in the direction of progress (the longitudinal
velocities), transverse velocities also exist. The ratio between the maxi-
mum longltudmal and transverse velocity is 1/s, and the latter reaches
its maximum one fourth of a period after the longitudinal velocity was
atits maximum. The character of these currents will be dealt with later,
and attention will be focused here on the wave itself.

The velocity of progress of the wave becomes infinite when s = 1 and
imaginary when s > 1. Now, s = v/¢ = (T,/12) sin ¢, where T\ is the
period of the tide in hours. Thus, ¢ becomes infinite when T, = 12/sin ¢,
or, if sin ¢ = 1, when T; = 12; that is, on a disk which rotates once in
24 hours, waves of this type cannot exist if the period of the wave is
greater than half the period of rotation of the disk. Applied to the
earth, the meaning is that waves of this type cannot exist if their period
is longer than one half pendulum day. This result is not so significant
as it appears to be, because the solution is valid only for an unlimited
body of water, and on the rotating earth the limitation of the ocean will
make impossible a complete development of this wave type. If a wave
proceeds in the longitudinal direction of an ocean, the transverse velocities
must vanish along the coasts, but may develop at some distance from
the coast. The wave must be of an intermediate type between the
Kelvin wave and the wave described here, and can be considered as com-
posed of longitudinal and transverse oscillations, the nature of which
cannot yet be expressed analytically.

In a narrow sea, transverse oscillations of the sea level will be present
even if no conspicuous transverse currents are developed. The periodic
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variations of the longitudinal currents automatically give rise to a periodic
transverse oscillation corresponding to that characteristic of the Kelvin
wave. Inastanding wave, horizontal currents reach their greatest values
at the nodes, and the amplitudes of the transverse oscillation will there-
fore be maximal at the nodes. The tide will be zero only at the central
point of the nodal line; on the right-hand side of the bay, looking toward
the closed end, high water will occur one quarter period before high water
at the closed end, and on the left-hand side it will occur one quarter
period after. At the antinode the transverse oscillations disappear.
These conditions are represented schematically in fig. 140. The reasoning
is based on the assumption that the deflecting force associated with the
longitudinal currents is balanced by a transverse slope, as was the case
for a Kelvin wave.

In the absence of transverse oscillations the tide will be zero along a
nodal line, but in the presence of transverse oscillations the tide will
vanish at a single point only. Points that have high or low water at the
same hour can be joined by lines which are called coiidal lines. These
cotidal lines all meet at a point where the tide vanishes, which is called
an amphidromic point. An amphidromic point can be caused either by
the effect of the earth’s rotation or by the interference of two tidal waves.

If a standing oscillation exists in a bay, there are no cotidal lines,
because high water occurs at the same time everywhere. However,
when transverse oscillations are present which differ from the longitudinal
by one quarter period, an amphidromie point is developed that lies on
the original nodal line (fig. 140). To the right of the center, high water
occurs at the time £ = 0, to the left at the time ¢ = 147, and the other
cotidal lines are spaced between these. Thus, the rotation of the cotidal
lines around an amphidromic point that is caused by the earth’s rotation
is, in the Northern Hemisphere, counterclockwise (as shown in fig. 140),
but it is clockwise in the Southern Hemisphere. This characteristic
may be used for deciding whether or not an observed amphidromic point
may be due to the rotation of the earth.

The methods of analysis that have been set forth here have been
applied mainly by Sterneck and Defant to the tides in “adjacent seas,”’
such as the North Sea, the Adriatic Sea, the Red Sea, and others. In
the case of the North Sea, from which numerous current measurements
are available, other methods developed by Proudman and Defant have
been used for deriving a complete picture. The considerations have even
found application to the Atlantic Ocean, the principal tides of which have
been studied by Sterneck and Defant. Their conclusions will be dealt
with when the tidal currents are discussed. In the other oceans, applica-
tion of the dynamic theories presents enormous difficulties and has not
been attempted. The above reasonings are purely qualitative, but G. I.
Taylor has succeeded in giving an exact solution for a bay of rectangular
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shape and constant depth (see Defant, 1925, 1929). In several aspects
this solution supports the above reasoning and shows particularly the
arrangement of the cotidal lines.

A generalization of the observed conditions has been made by R. A.
Harris (1894-1907), who divided the oceans into “oscillating areas,” the
period of free oscillation of which would be about 12 or 24 lunar hours if
they were enclosed by solid boundaries. The areas were selected so that
the observed difference in the time of high water at both ends of the area
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Fig. 140. Schematic representation of transverse oscillations in a bay in the
Northern Hemisphere leading to the development of an amphidromic point.

would be approximately 6 or 12 hours. Within each area one or more
nodal lines would be present. This division of the oceans into “oscil-
lating areas” brings a surprising consistency in the otherwise confused
picture of the tides, but, as pointed out by G. H. Darwin, it can hardly
be accepted as a physical explanation because, among other factors, the
rotation of the earth has been disregarded.

Tae CHARACTER OF THE Tipes. The tide-producing forces can be
computed with great accuracy, but the response of the oceans to these
forces is too complicated to be determined. Experience has shown, how-
ever, that the tides can be considered as composed mainly of a series of
harmonic oscillations, or partial tides, having the periods of the tide-
producing forces. To these terms must be added, in many localities,
annual and semiannual terms which are not related to astronomical
forces but which are ascribed to the effect of prevailing winds or changes
of sea level due to heating and cooling (p. 459). These long-period tides
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are called meteorological tides, in contrast to the astronomical. In locali-
ties where the wave of the tide is deformed by friction, particularly in
shallow bays, it may be necessary to introduce higher harmonic terms,
the periods of which are fractions of the periods of the principal par-
tial tides. Thus, in any given locality the tide can be presented by
means of a formula similar to equation (XIV, 22), adding, if necessary,
the meteorological tides and the higher harmonic terms. The periods
of the astronomical tides are the same as those of the forces. However,
the coefficients of the different terms are mostly not proportional to
those representing the forces, but depend upon the relative importance
at the locality in question of the waves produced by the various forces.
Similarly, the phase angles differ from the phase angles of the forces.

2 a [] [ 10 2 [ 2 4 6 8 10 12
HOURS HOURS

Fig. 141. Tide curves at spring tide (left) and neap tide (right).

The most important tide-producing forces are those of nearly semi-
diurnal and nearly diurnal period, for which reason the character of the
tide in any locality depends mainly upon the relative heights and phase
angles of the partial tides corresponding to these forces. Let us first
consider the partial tides due to the semidiurnal lunar forces of a period
12.42 hours and to the semidiurnal solar force of a period of 12 hours.
The former will give rise to two high waters and two low waters in 24.84
hours (one lunar day), and the latter to two high waters and two low
waters in 24 hours (one ordinary day). Thus, the high water due to the
moon will be retarded 0.84 hours every day, or about 50 minutes relative
to that caused by the sun. After coinciding on a given day, the partial
high waters will move apart, to coincide again when the lunar tide has
been retarded 12 hours, or after 12/0.84 = 14.3 days. The semidiurnal
tide will be great when the two partial tides coincide and small when
they counteract each other (fig. 141). The large tides are called spring
tides, and the small tides are called neap tides, and in a locality in which
the semidiurnal components are dominating, spring and neap tides
come at intervals of 14.3 days. ‘Where the tides are of the semidiurnal
type, the ratio between the ranges of the lunar and solar partial tides
may be fairly close to the theoretical ratio 1:0.47 (table 70 p. 550), in
which case the ratio between the ranges of spring and neap tides is
fairly close to 1.47:0.53 = 2.77.
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If the tides followed the tide-producing forces, the lunar and solar
gemidiurnal tides would coincide at full and new moon and would be
opposite in phase at the quarters of the moon. In most localities the
tides lag somewhat behind the tide-producing forces, and spring tides
oceur a day or two after full moon and a day or two after new moon.
The time difference between the meridian passage of full or new moon
and the occurrence of the highest high water is called the age of the tide,
and is given in days.

H

>

Fig. 142. Examples of different types of tides re-
sulting from simultaneous diurnal and semidiurnal tidal
components.

The close relation of the tide to the moon is also demonstrated by the
fact that, where a semidiurnal tide prevails, high water always comes at
nearly the same number of hours after the moon passes through the upper
or lower meridian—that is, after the moon is due south or due north.
The mean time difference between the meridian passage of the moon
and the occurrence of the next high water is called the mean high water
lunitidal interval, and is measured in hours.

Diurnal partial tides greatly complicate the picture, because the tide
will depend upon the relative magnitudes of the semidiurnal and diurnal
components and upon the time at which these components reach their
maxima. Figure 142 illustrates a few possible combinations. Figure
142A shows an ordinary “mixed type’ of tide in which one of the two
high waters of the day is much higher than the other, and one of the
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two low waters is much lower.  Also, the time interval between the higher
low water (I) and the lower high water (k) is much shorter than the time
interval between the lower low water (L) and the higher high water (H).
This tide is characterized by a diurnal inequality. The tides of the Pacific
coast of the United States are of the mixed type, showing a considerable
diurnal inequality, but the tides of the Atlantic coast are more nearly
of the semidiurnal type.

Figure 142B illustrates a case in which the inequality is found in the
high waters only, the two low waters being equally low. Figure 142C
illustrates a case in which only one high and one low water occur during
the day, because the other high and low water melt together into a
period of several hours with nearly constant water level. This particular
phenomenon is called the “vanishing?” tide.

The examples in fig. 142 were construeted by combining diurnal
and semidiurnal tides of different heights and different phase angles.
It is evident that different combinations lead to other tide curves in
which the diurnal inequality of the tide appears more or less pronounced.
The diurnal inequality of the tide varies during a month, because the
distribution of the moon’s tide-producing force over the earth varies
with the declination of the moon. The tides that display the greatest
diurnal inequalities are called the tropic tides, since they occur when the
moon’s declination is at its maximum or at its minimum-—that is, when
the moon is nearly above the Tropic of Cancer or of Capricorn.

Taking partial tides of other periods into account, and considering
the fact that the tide-producing forces vary with the distance from the
earth of the moon and the sun, one finds that a nearly unlimited number
of possible types of tides exists and that, in any given locality, the type of
the tide may change considerably during one month. Asa rule, however,
the tide has the same characteristics at neighboring stations on an open
coast. Detailed information as to the character of the tides in different
localities is found in several of the books listed at the end of this chapter.

Several terms used for describing the tide have been defined, but a
few more must be added. Mean sea level is the plane about which the
tide oscillates (Marmer, 1927). It is determined from tidal observa-
tions by averaging the tabulated hourly heights of the tide over a period
of several years. Mean sea level does not coincide, as a rule, with an
equipotential surface, because, where permanent currents are present,
the sea surface always slopes at right angles to the current (p. 391).
Mean sea level may also rise or drop along a coast, as is evident from
results of precision leveling along the Atlantic coast of the United States
(p. 677). Daily, weekly, monthly, and vearly sea level can be derived
from observations during a day, a week, a month, or a year. For daily
sea level, it is necessary to state how the average has been computed
(see Marmer, 1927).
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Mean high water is the average height of all high waters over several
years, and, similarly, mean low water is the average height of all low waters
over several years. The half-tide level lies exactly half way between mean
high water and mean low water, and differs as a rule from mean sea level.
In localities where the tide shows a considerable diurnal inequality, mean
higher high water and mean lower low water are computed from the
highest and lowest tides of each day.

In bays and in seas which communicate with the ocean through a
relatively narrow opening, the tide may differ from that in the ocean,
because the shape of the bay or the adjacent sea may favor the develop-
ment of certain components of the tide. Modifications due to the rota-
tion of the earth may also arise.

The tide in the English Channel represents an example of the latter
modification. The tide there has in part the character of a progressive
wave which enters the continental shelf from the Atlantic Ocean and
which, as it advances, takes the appearance of a Kelvin wave, with small
ranges on the left-hand side, the south coast of England, and great ranges
on the right-hand side, the northwest coast of France. On the coast of
France the Bay of St. Malo is particularly famous for its large tides,
because in the inner part of the bay the range of the spring tide is up to
12 m-(39 feet). This enormous range is in part attributed to the narrow-
ing of the bay and the shoaling of the bottom.

The largest known tides occur in the Bay of Fundy, where, in Noel
Bay, spring-tide ranges up to 15.4 m (50.5 feet) have been measured.
However, this tide can be accounted for in a different manner. In the
Bay of Fundy, high water occurs nearly simultaneously all around the
bay and, furthermore, it has been found that the strongest tidal currents
flow into the bay when the water is rising most rapidly, and out of the bay
when the water is falling fastest. These features—the increase in the
range of the tides toward the end of the bay, the simultaneous occurrence
of high and low water all over the bay, and the maximum currents at
mean water—all indicate that in the Bay of Fundy one has to deal with a
standing wave.

The range of the tide is, however, not zero at the opening of the bay,
for which reason the tide must be of the cooscillating type (fig. 139), and
the great increase of the range toward the head of the bay must be due
to resonance. An exact computation of the period of free oscilla-
tions of the waters of the Bay of Fundy has not been undertaken, but
according to rough estimates this period lies between 13 and 11.6 hours
(Defant, 1925). Such a period means that in the Bay of Fundy the ratio
y = T,/T. (p. 553) is probably sufficiently close to unity to bring about
resonance, but the increase of range toward the end of the bay may also
be augmented by the narrowing and the shoaling of the upper part.



WAVES AND TIDES : 563

Owing to the rotation of the earth, the tides are larger on the southeastern
than on the northwestern shores.

The tides in the Bay of Fundy are remarkable because of their great
range, but the increase of the range from the opening to the end of the
bay is not greater than in some other localities. The tides of the Adriatic
Sea have been examined very thoroughly by Defant and Sterneck, who
have found that there the cooscillating tide dominates. The longitudinal
semidiurnal tide shows a node at a distance from the opening of about
three quarters of the length of the sea, and inside the node the range of
the semidiurnal tide increases rapidly. On the other hand, the range of
the diurnal tides increases regularly from the opening toward the end,
and is, at the end, about four times as great as the range at the opening.
The range of the Bay of Fundy tide is also increased about fourfold from
opening to end, and this increase represents therefore no exceptional case,
By studying fig. 139 it is easily seen that the range of the cooscillating
tide must increase from the opening to the end of a bay if the ratio » lies
between 0 and 2, and that the increase must be the greater the closer » is
to unity. In the Adriatic Sea the transverse oscillations due to the
earth’s rotation have also been studied, and excellent agreement has
been obtained between observations and theory. Interested readers
are referred to Defant (1925).

Attempts to represent the tides of a large area on charts encounter
considerable difficulty, because the character of tides is known from coasts
and islands only, and the data can be combined in many different ways.
The first comprehensive representation was prepared by Whewell, who
in 1833 published a map of the cotidal lines of all oceans (Marmer, 1926).
As explained earlier (p. 557), cotidal lines are lines which join points
having high water at the same time, referred to Greenwich or some other
standard meridian. Later, charts of cotidal lines were prepared for
several smaller areas, and for the Atlantic Ocean the cotidal lines of
the semidiurnal and the diurnal tides have been plotted separately.
Charts dealing with the partial tides are preferable, because the character
of the cooscillating and independent partial tide. of any body of water
depends on the period of that tide. Similarly, charts showing the
range of the tide have more rational meaning when they present partial
tides, and charts of this nature have been prepared for some adjacent
seas. When dealing with tidal ranges, one should use data from well-
exposed stations, since the tide in bays and estuaries may be distorted.

Owing to the uncertainty involved in arriving at a general representa-
tion of the tides, it is often necessary to interpret the available data in a
certain manner in order to arrive at a consistent picture. The most
outstanding example of such interpretation is Harris’ division of the
oceans into “oscillating areas,” which was mentioned on p. 558. How-
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ever, a satisfactory presentation of the tides of the oceans has not yet
been given, with the possible exception of the tides of the Atlantic Ocean,
to which we shall return.

ANaLysis AND PrEbpIcTION OF TipEs. Any observed tide curve can
be represented, as has already been stated, by means of a series of har-
monic terms, the periods of which correspond to the periods of the
astronomical and meteorological tides (p. 550). This is true regardless
of how complicated the tide is. The coefficients of the different terms
can at any given localities be determined with great accuracy by means
of harmonic analysis if sufficient data are available. Methods employed
in harmonic analysis are described by Schureman (1924). Here it will
be mentioned only that the harmonic analysis of tidal data is a compli-
cated process, because many periods have to be considered, some of, which
differ but little in length. Methods have been developed, however,
which permit fairly rapid calculations.

. The tide curve can be reproduced with a high degree of accuracy if a
sufficient number of harmonic terms have been evaluated. These terms
can be used for computation of future tides, since the tide is one of the
few geophysical phenomena that repeat themselves with nearly astronom-
ical regularity. The process of computation consists in calculating the
tide corresponding to each single term, using the empirically determined
amplitudes and phase angles and finally adding the terms, thus construct-
ing a predicted tide curve. The calculation and addition is now made
by means of specially constructed tide-predicting machines for preparing
tide tables. These machines are operated by the U. 8. Coast and Geo-
detic Survey, Washington, D. C., the British Admiralty, London, and
the Deutsche Seewarte, Hamburg. The tide tables, which are issued
for each year, give advance information as to the time and height of
high water and low water of all commercially important ports of the
world. In addition, information is given as to the time  difference
between high water at principal ports and high water in neighboring
localities. :

A popular description of the tide-predicting machine of the U. S.
Coast and Geodetic Survey is given by Marmer (1926), and a technical
description is given by Schureman (1924). Experience has shown that
the deviations of the actual tides from the predicted values are mostly
small and are due to nonperiodic disturbances caused by winds and shifts
in currents.

Tidal Curren.fs

Tidal currents represent the motion of the water particles in the
progressive or standing tide waves which on coasts and islands are recog-
nized by the rise and fall of the tide. The tidal currents will therefore
be of different character in different areas, depending upon the character
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of the tides, and will, in a given locality, pass through cyclic changes
corresponding to those of the tide. Complications may arise because of
the configuration of the coast, and tidal currents may attain great
velocities in straits or sounds.

In order to discuss the general character of the tidal currents, it is
necessary to repeat some of the equations that have been used previously.
Disregarding friction and the rotation of the earth, placing the z-axis
in the direction of progress of the tide wave, and assuming constant depth,
one obtains the equations of motion and continuity in the form

Qe = g gy = AT (X1V, 32)
where v, is the horizontal velocity, g is the acceleration of gravity, and
n is the vertical displacement of the surface.

For a progressive wave,

7 = mo cos (ot — kx), (XIV, 33)
and therefore

9= ggnn cos (of — kx) = c% cos (ol — kx)

= \/g no cos (ot — kz), (XIV, 34)

where ¢ = +/gh is the velocity of progress of the wave.

Thus, the velocity reaches its maximum in the direction of progress
at high tide (n = 7o) and its maximum in the opposite direction at low
tide (y = —no). The tidal current is alternating, changing its direction
every half period.

For a standing wave

n = n(zx) cos df, (XIV, 35)
wherefore

_on(z) g . _on(x) g i
V, = W ; sIn ot = T ; cos | of 5 i (XIVa 36)

The relation between the tide and the current is best recognized by con-
sidering a free-standing oscillation in a rectangular basin of constant
depth, 2. In this case n(z) = 7o cos «z, and therefore

K . .
Vs i ZiM0 sin xx sin ot
= = \/% 7o sin kz cos (at = ’—5) (XIV, 37)

Thus the current is always zero at x = 0, and it is also zero at ¢ = 0 and
at ¢ = 14T —that is, at the time of high and low water. It reachesits
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maximum at ¢ = 147 and at t = 34T —that is, at mean water between
high and low water and at mean water between low and high water. In
the cases considered here the tidal currents are uniform from the surface
to the bottom.

The total horizontal displacement during one half tidal period when
the water flows in the same direction, if the maximum tidal current is
called V, is

i VJ; e zv} = V%’- (XIV, 38)

The displacement is also independent of depth.

In order to get an idea of the corresponding velocities of the tidal
currents and the maximum displacements, we shall consider the tide
in a progressive wave of an amplitude (not range) of 100 cm. The cor-
responding maximum tidal currents in seas of different depths are shown

in table 71.
TaBLE 71
VELOCITY OF TIDAL CURRENTS AND MAXIMUM HORIZONTAL DIS-
PLACEMENTS IN A WAVE OF AMPLITUDE 100 CM PROCEEDING IN
WATER OF CONSTANT DEPTH. EARTH’S ROTATION AND
FRICTION NEGLECTED

Depth (m)

Semidiurnal tide
100 500 1000 | 2000 | 4000

Kbt tiit current{cm/sec 31.3 14.0 9.9 7.0 4.9
B knots 0.61 | 0.27|0.19 | 0.14 | 0.10
Maximum displacement km 4 . 4.4 = e B 04

nautical miles 2.4 11 0.75 [ 0.54 | 0.38

It appears from this table that in the open ocean the tidal currents
cannot reach any appreciable velocities, but measurements demonstrate
that the actual velocities are considerably higher than those tabulated,
partly because the earth’s rotation must be taken into account, and partly
for reasons that as yet are unexplained. Before the effect of the earth’s
rotation is considered, tidal currents in waters of changing depth or
changing width will be dealt with.

In a channel of rectangular cross section but variable depth, h, and
width, b, the combination of the equations of motion and of continuity
can be written (Lamb, 1932, p. 275)

g 9 =
ba(hba) +O’211 o 0,
where
n = n(x) cos at.
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Fleming (1938) has used this equation for studying the tidal currents
on a continental shelf related to a standing wave with a node line parallel
to the coast. In this case, b is constant, and one obtains

T x
== E.L n(z) dz,

where z is the distance from the coast and A is the depth. If the ampli-
tude of the wave varies slowly with the distance from the coast, as may
be expected if the continental shelf is wide and the water is not too shal-
low, the maximum velocity of the tidal current is approximately

V=og %,
where z is the distance from the coast and h is the depth. It is assumed
that z is small compared to the ., X
wave length.
If the depth is constant, the h

velocity increases linearly with

distance from the coast, but, if the >
slope of the bottom, z/h, is con- Fig. 143. Schematic cross section of a
stant, the velocity is independent continental shelf showing that the ratio
of the distance. Generally, the z/h is at & maximum near the border of the
ratio x/h is not constant, and then 308

the tidal currents reach a maximum at the distance z at which z/h is
greatest. The profiles of many continental shelves are such that z/h is
greatest near the border of the shelf (fig. 143), and the maximum tidal
currents may therefore be expected near the border.

These considerations hold true not only in the case of a standing wave,
but also, in general, if a transport of water toward the coast takes place
during some part of the tidal period and away from the coast during some
other part of the tidal period. Therefore they help to clarify some of the
characteristics of tidal currents near coasts.

Another question of interest is that of tidal currents where the
bottom topography is irregular, showing basins and submarine ridges
and peaks. A basin is generally of small dimensions relative to the
length of the tide wave (the semidiurnal tide wave is 4200 km long
where the depth is 1000 m), and the tidal current, if existing, must
therefore be in the same direction in the entire basin during one half
tidal period, but such flow would necessitate the presence of ascending
and descending motion of considerable velocity at the borders of the
basin. If the depth of the basin below the general level of the sea bottom
is 1 km and if the width of the area of ascending motion is 10 km, then
the average ascending motion would have to be one tenth of the hori-
zontal velocity. This type of flow would be possible in homogeneous
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water, but in the ocean the stability will effectively counteract the
development of vertical motion, wherefore it is probable that tidal motion
is not present in basins below a short distance from the upper rim.
On the other hand, tidal currents will flow over submarine ridges. Sub-
marine peaks that rise from a general level will form an obstacle to the
tidal currents; however, the water need not rise or descend along the
peaks, but can be horizontally deflected. Thus the stable stratification
of the ocean waters must lead to a number of modifications of the tidal
currents which would be absent in homogeneous water. These modifica-
tions have not yet been studied theoretically, nor have measurements
been made in the field, for which reason the above considerations are
still hypothetical, but they are in agreement with the fact that submarine
ridges and peaks are free from fine sediments. The absolute depths
are of no consequence, and a submarine peak appears free from fine
sediments if it rises, say, 500 m above its surroundings, regardless of
whether the average depth of the surroundings is 1000 m or 5000 m.
Tidal currents or currents associated with internal waves of tidal period,
which will be dealt with later (p. 590), and large eddies caused by moving
wind systems are probably all active in keeping elevated features free
from fine sediments. On the other hand, the accumulation of fine
sediments in basins does not prove that currents are absent, because,
owing to gravity, fine sediments must accumulate in the depressions
of the sea bottom even in the presence of currents. The tidal currents
with which we are dealing now may not exist, but other types of flow
may occur. In order to answer these gquestions, direct measurements in
basins must be carried out during several tidal periods.

Variation in the width of bodies of water leads to other modifications
of the tidal currents. Strong tidal currents through narrow sounds
are readily accounted for by the fact that large amounts of water have
to flow through these openings during each half tidal period. Consider
a bay of surface area A square meters which is in communication with
the open sea by an opening whose cross-section area is S square meters.
Let the average range of the tide in the bay be 2no m. The total volume
of water that flows into the bay in the time interval between low and
high water is then A X 2y, m3. The inflow, on the other hand, is equal
to SiT/2, where 7 is the average velocity during the half tidal period
(T/2) in which inflow takes place. The maximum velocity during that
time is 7 /2 times the average velocity, but the flow is not uniform through
the cross section. Observations have shown that in mid-channel the
velocity is about one third larger than the average velocity. There-
fore, the maximum velocity of the tidal currents in mid-channel is
approximately

V _— 2110.

Il v
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As a schematic example, let us consider a bay that has an area of
100 km? and is in communication with the open sea through a channel
that is only 200 m wide and 50 m deep. Let us assume that the range
of the semidiurnal tide in the bay is 2 m. Then, in the time interval
between high and low water (6.21 hours, or 22,356 seconds), 2 X 10% m?
of water must flow out through the channel, the cross section of which is
10* m2. The average current must therefore be

# = 89 em/sec = 1.73 knots,

and the maximum current in mid-channel under the assumed conditions
would reach a value of about 180 cm/sec, or 3.6 knots. Tidal currents
of such velocity are not uncommon in sounds, and in many narrow straits
tidal currents up to 10 knots or more occur at spring tide. Pilot books
contain information as to the time and velocity of tidal currents in
navigated passages and instructions as to the time when such passages
can be made safely by different types of craft.

If, in the above example, the opening had been 1 km wide and 100 m
deep, the maximum currents at the center of the channel would have
been only 0.36 knots. This clearly demonstrates that exceptionally
strong tidal currents can be expected only in narrow sounds or inlets.
Marmer (1926) has computed the tidal currents at the opening of the
Bay of Fundy and found no higher maximum velocities than 1.59 knots,
in spite of the tremendous range of the tide at the head of the bay. This
result, which is in agreement with observations, clearly shows that
strong tidal currents are not encountered at the opening of such bays as
the Bay of Fundy, where the cross-section area of the opening is great
compared to the surface area of the bay.

The tidal energy can be well illustrated by considering the number
of horsepower which can theoretically be developed by tidal currents
flowing through a narrow sound connecting a basin with the open sea.
The average number of horsepower during one half tidal period, 14T, is
equal to gpA2ne2/T. With A = 100 km? and 29y = 2 m one obtains
360,000 h.p., but even under the best of conditions only a small fraction
of this amount can be actually utilized. Owing to the depth and the
width of the opening through which the tidal currents flow, the energy is
not concentrated as in a waterfall, but is distributed over a large surface.
Furthermore, the tidal power has an intermittent character varying from
zero to its maximum value in one quarter tidal period and reaching much
higher maximum values at spring tide than at neap tide. This makes
utilization on a large scale extremely difficult, but on a small scale tidal
power is being used in a few river estuaries. Marmer (1926) computes
that theoretically the tides in the Bay of Fundy can produce no less on
an average than 200,000,000 h.p., but he adds that by the time the scheme
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for utilizing the energy of the tide in the bay is reduced to practical
details the figures for the horsepower lose much of their impressiveness.

Neglecting the earth’s rotation, the tidal currents are alternating
if they are associated with a single standing or progressive tide wave; but
if several tide waves are present, interference takes place which may give
rise to rotary tidal eurrents, meaning that the tidal currents regularly
change direction and velocity during one tidal period. If the velocities
are plotted as vectors from one central point, the end points of the vector
will describe a closed curve during one tidal period (fig. 144), and in the
absence of other currents the vector sum will be zero.
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Fig. 144. Examples of rotating currents produced by interference of tide waves
progressing at right angles to each other and of different phases.

As a simple case, let us consider the interference between two tidal
waves which progress along the positive  and y axes. If the depth is
constant, the alternating tidal currents corresponding to the two waves
are at the point z =y = 0

YV = M1 \j% cos ot

vy = 1]2\/% cos (ot + €)

where e determines the phase difference between the currents at the
time ¢t = 0. Assume first e = 0, meaning that the tidal currents in the
z and y directions reach their maximum values at the same time (fig.
144B). In this case the resultant current will also be alternating and
will form an angle « with the z axis, which is determined by tan a = 72/n:.

Assume next ¢ = v/2, meaning that the maximum velocity in the
direction of the negative y axis is reached one quarter period after the
maximum velocity in the positive z direction. The result will be a
current which rotates clockwise, the end points of the vectors represent-

(XIV, 39)
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ing the current, which will be on an ellipse the ratio of the axes of which
is T“/rjg (ﬁg 144:A).

If e = —x/2, similar reasoning leads to the conclusion that the
current will turn counterclockwise as shown in fig. 144C. In general,
interference of tide waves leads to rotating currents, the direction of
rotation being clockwise or counterclockwise, depending upon the
phase difference between the two interfering waves, and the ratio between
the axes of the resulting ellipse depending upon the phase difference
and the amplitudes of the waves.

Except in narrow sounds the observed tidal currents are mostly
rotating. If these currents resulted from interference, one should expect
to find clockwise or counterclockwise rotation to be equally frequent,
but in the Northern Hemisphere, from which most observations are
available, clockwise rotation is by far the more common. This fact
indicates that the rotary currents are as a rule not caused by interference
but by the effect of the rotation of the earth.

On p. 555 are given the equations of motion and continuity which
apply to long waves, taking the rotation of the earth into account.
Two integrals of these equations have been given—one by Lord Kelvin,
which is applicable to a tidal wave in an infinitely long canal of constant
width and depth:

v, = \/% noe=1/9 cos (at - %z),
v =0 (y = 2w sin ¢); (XIV; 40)

and one by Sverdrup, which is applicable to conditions on a rotating disk
of infinite dimensions:

ik a
V, = J—};mﬂn CcOS (o't o E x),
(XTV, 41)

S8t s o
Uy = ]—_b'l—_?ﬂomn O’f""'c—,x,

The former solution defines an alternating current which may be present
in a narrow channel, provided that the amplitude of the tide wave varies
across the channel according to the formula 5 = ne=/9¥. The latter
solution defines a current which rotates clockwise in the Northern
Hemisphere and counterclockwise in the Southern Hemisphere, that is,
cum sole in both hemispheres. The end points of the vectors representing
the tidal currents lie on an ellipse, the ratio of the axes of which is equal
tos. When s = 1, the velocities become infinite, and at s > 1 they
become imaginary. The solution has therefore no meaning unless

8 <1 Now,
ol s S e )
= =, Siny = psine (X1V, 42)
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where T is the period of the tide and T is the period of rotation of the
earth, 24 hours. It follows that s < 1 only if T < 12/sin ¢, or if the
period of the tide is less than one half pendulum day, and that the above
solution is not valid unless this condition is fulfilled. When dealing
with the tide (p. 556), it was pointed out that the result is not so sig-
nificant as one might expect because it is applicable only to conditions
on a rotating disk of infinite dimensions. When applied to the oceans
it must be taken into account that these are relatively narrow and that
at the very coasts the currents cannot be rotating but must be alternating
in the direction parallel to the coast. The actual tidal currents in an
ocean must therefore be intermediate in character between those cor-
responding to a Kelvin wave and those present on an unlimited rotating
disk.

Measurements at lightships have shown that rotating currents oceur
at a short distance from the coasts, and measurements from vessels
anchored in deep water have demonstrated that rotating currents are as
a rule present in the open sea. Most of these observations have been
made in the Northern Hemisphere where, in nearly all instances, clock-
wise Totation of the tidal currents has been encountered, whereas a few
observations in the Southern Hemisphere have shown counterclockwise
rotation. These facts present the best support of the concept that, in
general, the rotating tidal currents are due to the effect of the earth’s
rotation and not to interference, but in some cases interference may
complicate the picture. An exact mathematical treatment of the tidal
currents of the ocean, however, encounters the same difficulties as the
exact development of the dynamic theories of the tides.

As already stated, tidal currents and tides represent two different
manifestations of the same phenomenon. When dealing with the tides
it was shown that in any locality the tide can be represented by means of a
series of harmonic terms having the same periods as the periods of the
tide-producing forces. The tidal currents can be represented in a similar
manner, but if one deals with rotating currents it is necessary to consider
separately two components of the current, say, the N-S and the E-W
components. Tidal currents are much more difficult to observe exactly,
~ however, mainly because other types of currents are as a rule super-
imposed on them, and a great number of data are needed in order to
eliminate the superimposed currents and obtain a clear picture of the
periodic tidal motion. It can be shown, however, that the tidal currents
are closely related to the character of the tide.

It was mentioned that on the Atlantic coast of the United States
the tide is of the semiditrnal type, the diurnal components being small.
In agreement with this feature it has been found that off the Atlantic
coast the tidal currents are also of the semidiurnal type, meaning that
during 24 lunar hqurs the end points of vectors representing the tidal
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currents describe two nearly identical ellipses. At the time of the tropic
tides, when the declination of the moon is greatest, the tide displays some
diurnal inequality and, similarly, the two current ellipses of a lunar day
differ somewhat.

On the Pacific coast of the United States the tides are of the mixed
type and are characterized. by a considerable diurnal inequality. Off
that coast, complicated tidal currents are present and in course of a lunar
day the end points of the vector representing hourly velocities and direc-
tions of the tidal flow deseribe curves that have no similarity to ellipses
but that nevertheless result from the combination of several current
ellipses corresponding to tides of different periods. In most instances
a good approximation to the observed conditions is obtained by combining

Fig. 145. (A) Observed tidal currents at San Francisco light vessel. (B) Semi-
diurnal and diurnal tidal currents derived from the observations by harmonic analysis.
(C) Tidal currents at the San Francisco light vessel computed from the semidiurnal
and diurnal currents shown in B.

the different semidiurnal periods to one single period of length 12 lunar
hours and the diurnal periods to a single diurnal period of length 24 lunar
hours. This is illustrated in fig. 145, in which the left-hand diagram
represents the average tidal currents (Marmer, 1926b) during 24 lunar
hours at San Francisco light vessel, which is anchored in 31 m of water
at a distance of nine nautical miles from the nearest coast. The repre-
sentation corresponds to those in fig. 144 except that the arrows have
been omitted and only the curve joining their end points is shown. The
hours marked along this curve represent the lunar hours after the highest
high water at San Francisco, the time of that high water being marked 0.
Harmonic analyses of the semidiurnal and diurnal tidal currents leads
to the results which are represented in the middle part of the figure.
The semidiurnal and diurnal currents both reach about the same maxi-
mum velocities, but the semidiurnal rotates twice in 24 lunar hours,
whereas the diurnal rotates once. The diagram to the right has been
derived by combining the two, and this diagram is sufficiently like the
one to the left to demonstrate that the complicated pattern is mainly a
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result of the simultaneous presence of two tide waves of different periods.
The discrepancies may be due partly to the lumping together of the semi-
diurnal periods and the diurnal periods, and partly to inaccuracy of the
average values. :

The periods of the tidal currents are in agreement with the periods
of the tide, but no general relationship has been established between
the velocities of the tidal currents and the height of the tide. The reason
is that the velocities of -the tidal currents depend not only upon the
height of the tide but also upon the depth to the bottom, the slope of the
bottom, and the effect of the earth’s rotation. Theoretical consideration
of all these variables has not yet been possible and observations of
currents are too few to permit the establishment of empirical laws.

Effect of Friction on Tides and Tidal Currents

In shallow water the tide and the tidal currents will be modified by
the friction to which the waters are subjected when moving over the
bottom. This bottom friction influences the currents to a considerable
distance from the boundary surface, owing to the turbulent character of
the flow (p. 480).

The effect of friction on the tide can be illustrated by considering a
co-oscillating tide in a bay of constant depth and width. In the absence
of friction the tide will have the character of a standing wave that can be
considered composed of two waves traveling in opposite direction, the
incoming wave and the reflected wave. In the presence of friction the
tide can still be considered as composed of two such waves, but the com-
bination no longer results in a single standing oscillation because the
amplitudes of both waves must decrease in their directions of progress.
In general, it can be assumed that the amount of energy that is dissipated
is always proportional to the total energy of the wave. If this is true,
the friction leads to a logarithmic decrease of the amplitude, provided the
depth is constant. Assume that the waves progress in the z direction,
that the influence of friction begins at = 0 and that reflection takes
place at z = 1. On these assumptions the amplitude of the incoming
wave will be (Fjeldstad, 1929)

71 = noe™* cos (of — kx), (XIV, 43)
and of the reflected wave
N2 = noe *2=2 cos [of — k(2] — )] (XIV, 44)

Here u represents a coefficient of damping. The amplitude of the tide is
found by adding 5: and 5, and the result can be written in the form

7 = noe**[{cos kx + e 20-2) cos k(2] — x)} cos ot
+ {sin kx + ¢ %2 gin k(2] — )} sin of] (XIV, 45)
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From this equation it follows that the oscillation can be considered as
brought about by two standing waves of phase difference /2 or one
quarter of a period (p. 552).

Let us consider a bay the length of which is 3¢ L, where L is the length
of the wave in the bay. This means introducing ! = 3¢ L, «l = 34 =, and
kz = 2rz/L. Let us furthermore assume that at the opening of the bay
the tide can be represented by the equation no = Z cos of, which means
that at z = 0 the amplitude is Z and high water occurs at t = 0. In the
absence of friction the standing wave in the bay will show a node at a
distance of one quarter wave length from the opening, and inside of the
node high water will occur at ¢ = 6" if the period of the wave is 12"

AMPLITUDE

i

Fig. 146. Effect of friction on amplitude and phase of
the cooscillating tide in a bay, the length of which is 3¢
of the length of the tide wave.

The variations along the length of the bay of amplitude and phase are
shown in fig. 146, by the curves marked 0. The effect of friction will
depend upon the value of u and, in order to illustrate the effect, we
introduce three numerical values u = 8/(15L), u = 4/(3L), and p = 4/L,
corresponding to a decrease of the amplitude of the tide wave to one half
of its value on a distance equal to 1.17 L, 0.52 L, and 0.17 L, respectively.
The corresponding variations along the length of the bay of amplitude and
phase of the tide are shown in fig. 146 by the curves marked i, 2, and 3.
The dashed line in the upper part of the figure shows the change in phase
on three eighths of a wave length of a progressive wave.

By means of fig. 146 three effects of friction are brought out: (1) the
node at which the amplitude of the tide is zero disappears and, instead, a
region with minimal range is found; (2) the abrupt change of phase
disappears and is replaced by a gradual change; (3) the phase difference
between the opening and the end of the bay is decreased and approaches
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the value found by considering a progressive wave only. It is evident
that if the effect of friction is very great, the wave takes the character of a
progressive wave the amplitude of which decreases exponentially because
the reflected wave becomes insignificant when the amplitude of the incom-
ing wave has decreased at the end of the bay to a small fraction of its
original amount.

The most striking example of the influence of friction on tides is found
on the wide shelf along the Arctic coast of eastern Siberia. There the
tide wave reaches the shelf from the north after having entered the Polar
Sea through the wide opening between Spitsbergen and Greenland and
having crossed the deep portions of the Polar Sea. Between longitudes
150°E and 180°E the width of the North Siberian Shelf exceeds 300 miles
and in the greater part of that area the depth of the water is between
20 and 40 meters. The sea is ice-covered nearly throughout the year and,
owing to the resistance which the ice offers, the tidal currents are sub-
jected to frictional influences from the ice on top as well as from the bot-
tom. The total effect of friction is therefore so great that on the coast the
tide nearly vanishes (Sverdrup, 1927, Fjeldstad, 1929 and 1936). The
decrease of the amplitude when approaching the coast is brought out
by the data in table 72, which shows the amplitude and phase of the
term M near the border of the shelf and at two localities on the coast.
Of these two localities, Ayon Island lies a little south of Four Pillar
Island, but the tide wave reaches Four Pillar Island later because the
direction of progress of the wave is altered near the coast owing to the
configuration of the bottom (Sverdrup, 1927).

TABLE 72

AMPLITUDE AND PHASE OF THE SEMIDIURNAL TIDE, M,, ON THE
NORTH SIBERIAN SHELF

M,
Locality Latﬁude LongEi}tude
Amplitude| Phase |Difference
(cm) (degrees) | in phase
Near border of shelf . . .. . 74°33" 167°10’ 13.75 158 0
Avyon'Island2 ) 0% b 69 52 167 43 1.78 347 189
Four Pillar Island....... 70 43 162 35 0.98 60 262

It is seen that the later the tide the smaller the amplitude is, and it
can be readily verified that the logarithm of the amplitude is nearly a
linear function of the phase difference, as should be expected if the wave
length remained constant, because in that case pr = pLo/2r where
a = xz represents the phase difference.

The fact that the tide practically vanishes on the coast shows that
when crossing the wide shelf the energy of the incoming tide wave is
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nearly dissipated by friction against the bottom and theice. This feature
is of importance to the tides of the Atlantic Ocean, from which the
principal semidiurnal components enter the Polar Sea (p. 581).

In several adjacent seas the effect of friction; has been studied by
H. Jeffreys, who used a method developed by G. 1. Taylor and first applied
to conditions in the Irish Sea. The principle is simply that under sta-

tionary conditions the net amount of tidal energy which is brought into
z=h

an area must equal the amount Y
which is lost in the same area by

dissipation due to friction. There- z
fore a determination of the met =gl 2 1 2
amount of tidal energy which is

brought into an area represents also

a determination of the dissipation.

- 8
These studies have found an | 7 6 A
interesting application. It appears A
G

to be established by astronomers . z

that the speed of rotation of the 3 &

earth is very slowly decreasing, so M?T::T_-,
that during a century the length of =

the day increases on an average by
about one thousandth of a second.
This slowing up may be caused by
the dissipation of tidal energy, be-
cause estimates of the dissipation

Fig. 147. Combined influence of fric-
tion and the rotation of the earth on tidal
currents in shallow water in the Northern
Hemisphere (according to Sverdrup).
For explanation, see text.

give values which correspond to the energy needed for bringing about
the observed change in the earth’s period of rotation.

So far, we have considered the effect of friction on the tides. In
order to study theoretically the effect of friction on tidal currents, it is
necessary to add the frictional terms (p. 475) in the equations of motion
applicable to long gravitational waves (p. 555), and to integrate the equa-
tions. Such integration was performed by Sverdrup (1927) on the
assumption that only the vertical turbulence need be considered and that
the coefficient of eddy viscosity was constant. The boundary conditions
were that at the free surface the shearing stresses should be zero and at the
bottom the velocity should be zero. = The results give some idea about the
effect of friction, although the assumption of a constant eddy viscosity is
not in agreement with more recent results according to which the eddy
viscosity near the bottom increases rapidly with increasing distance from
the bottom.

The more important conclusions can be summarized as follows.
Near the bottom there exists a ‘“layer of frictional influence” the thick-
ness of which depends upon the ratio s = (27 sin ¢)/To and upon the
value of the eddy viscosity, and above which the tidal currents have the
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same character as in the absence of friction. Within a progressive wave
in the Northern Hemisphere, with which the investigation deals, the
major axis of the current ellipse is in the direction of progress and maxi-
mum current oceurs at high water (fig. 147B). Close to the bottom, in
the layer of frictional influence, the current ellipse is more narrow, it is
turned to the right, and maximum current occurs earlier (fig. 147C). As
a consequence the current near the bottom will flow against the direction
of progress. The velocities in the direction of progress at different time
intervals and as function of depth are shown in fig. 147A. A longitudinal
section of the wave (fig. 147D)
shows that the lines along which
the velocity is zero are no longer
vertical lines as in the case of no
friction (p. 517), but are curved
forward. The angle which the cur-
rent ellipse forms with the direc-
tion of progress does not increase
throughout the layer of frictional
resistance but reaches a maximum
at some distance above the bottom.
If the depth to the bottom is small,
the effect of friction may reach to
the surface, in which case the max-
imum surface current will no
longer coincide with the direction
of progress but will deviate to the
right and, in very shallow water, the
deviation may decrease towards the

o 10 20 30 40 CM,/SEC.

Fig. 148. Tidal currents in the North
Sea, lat. 58°17’N, long. 2°27'E, depth
80 m, demonstrating the effect of friction
when approaching the bottom, Measure-
ments by Helland-Hansen on August 7

bottom.

Figure 148 shows an example of
current measurements in the North
Sea which appear to confirm the

and 8, 1906. above coneclusions. Other exam-
ples are found in Sverdrup’s discussion (1927) of current measurements on
the North Siberian Shelf, but in several of these cases it was necessary to
take into account that the ice offered a resistance to the tidal motion
and also that occasionally a nearly discontinuous increase in density at
some depth brought complications. In the latter case an approximation
could be obtained by introducing two layers of constant eddy viscosity
separated by a layer of no eddy viscosity, the latter being the layer of
very great stability.

The theoretical treatment of the subject has been expanded by Fjeld-
stad (1929, 1936) who has found integrals of the equations of wave motion
in cases in which the eddy viscosity can be represented as a simple func-
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tion of depth, and who has developed methods of numerical integration
which are applicable to other cases. His conclusions are that the essen-
tial features which were found by assuming a constant eddy viscosity
remain unaltered. In sufficiently deep water the current ellipse will at
some distance from the bottom show a maximum deflection to the right
(to the left in the Southern Hemisphere) and when approaching the bot-
tom the time of maximum current will be more and more advanced. Itis
shown that the value of the eddy viscosity near the bottom is of greatest
importance, for which reason the character of the currents depends
mainly upon the value of the eddy .viscosity at the bottom and upon the
rate of increase directly above the bottom.
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Fig. 149. (A) Observed variations with depth of tidal currents at different lunar
hours, according to measurements by Sverdrup on August 1, 1925, in lat. 76°36’N,
long. 138°30’E. (B) Computed variation with depth of tidal currents, assuming an
eddy viscosity which increases linearly from the bottom to the surface (according to
Fjeldstad).

At the bottom one should expect, from analogies with experimental
work in laboratories (p. 479), that the eddy viscosity will be small, hav-
ing a value which depends upon the roughness of the bottom and the
“friction velocity.” Near the bottom the eddy viscosity should increase
linearly with increasing distance, the increment being proportional to the
friction velocity. At some greater distance from the bottom, stability of
the stratification may influence the eddy viscosity, and in very shallow
water the eddy viscosity must reach a maximum below the free surface
and decrease to a small value at the very surface. In homogeneous
shallow water it may be expected, however, that the introduction of an
eddy viscosity which increases linearly from the bottom to the surface
will give a good approximation because conditions close to the bottom
exercise the greatest influence upon the character of the motion and
because at some distance from the bottom the value of the eddy viscosity
is of minor importance. This is illustrated by the example in fig. 149,
To the left are represented the components of the tidal current in the
direction of progress of the tide wave, at the time of maximum current
at the surface (marked I) and at the five following tidal hours. The
curves are based on observations at three depths—0, 12, and 20 m—on
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August 1, 1925, in lat. 76°36’N and long. 138°30’E, where the depth to the
bottom was 22 m. The current was at all depths rotating clockwise, and
at 0, 12, and 20 m the ratios between the axes of the current ellipses were
0.62, 0.53, and 0.61 respectively. To the right in the same figure are
shown the currents which have been computed by Fjeldstad assuming
A = 0.202 (2 + 68) g/cm sec, where 2 is the distance from the bottom in
centimeters. The computed values have been adjusted to give the
observed average current, therefore emphasis must be put on the fact that
the computed variation of the current with increasing distance from the
bottom agrees with the observed. The computed ratios between the axes
of the current ellipses are 0.60, 0.56, and 0.56 at 0, 12, and 20 m, respec-
tively. Both observations and computation show that in this case the
ratio decreases very slowly when approaching the bottom.

Observations of tidal currents at different distances from the bottom
and within the layer of frictional resistance are not available from many
localities and the factual information as to the effect of friction on tidal
currents is therefore meager. Measurements from the North Sea off the
coast of Germany have been discussed by Thorade (1928), who has
studied the influence of friction by a different method of attack. In the
North Sea the gravitational forces can be directly determined because the
slope of the surface due to the tide wave can at any time be derived from
tidal observations at coastal stations. Furthermore, Corioli’s force and
the accelerations can be derived from the current measurements and the
frictional forces can therefore be found by means of the equations of wave
motion because all other terms in the equations are known. Thorade’s
results are, in general, in agreement with the conclusions which have
been presented, but many details need further examination. It is of
particular interest, however, to observe that on an average during one
tidal period Thorade finds that the eddy viscosity is very small at the
bottom, increases rapidly with increasing distance from the bottom, but
decreases again when approaching the surface. The general character of
this variation is in agreement with the above considerations as to the
variation of the eddy viscosity.

The influence of friction on tidal currents is also evident from studies
of the tidal currents in the Dover Straits by J. van Veen (1938). He
finds there that the velocity distribution between the surface and the
bottom can be represented by means of a function of the form » = az'/»
where nequals about 5.2. This implies that the eddy viscosity is approxi-
mately proportional to z*%52 meaning that the increase is somewhat
less than that corresponding to a linear law, but no conclusions can be
drawn as to the numerical values of the coefficient.

The effect of lateral mixing on tidal currents has so far not been
examined, but it is possible that friction arising from lateral turbulence
is of importance close to coasts.
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The Semidiurnal Tide of the Atlantic Ocean

A number of the theoretical considerations which have been set forth
have been applied, particularly by Defant, towards explaining the tides
of the Atlantic Ocean. Defant (1932) has dealt with both the semidiurnal
and the diurnal tides, but in the following we shall consider mainly the
semidiurnal tide.

The Atlantic Ocean and its continuation, the Norwegian Sea and the
Polar Sea, can be considered as a long bay which is closed in the north,
whereas in the south it is in open communication with the Antarctic
Ocean. On the basis of this concept the tides of the Atlantic Ocean can
be considered as composed of two parts, a cooscillating tide which is
maintained by the tide of the Antarctic Ocean, and a free tide which is
maintained by the direct effect of the tide-producing forces. Neglecting
the rotation of the earth and the effect of friction, both the cooscillating
and the free tide can be computed by means of the method of numerical
integration which was presented on p. 539, taking into account that the
energy of the part of the tide wave which enters the Norwegian Sea and
the Polar Sea is completely dissipated on the shallow shelves of these areas
and that for this reason no reflected wave returns from these areas (p.
577). Part of the entire tide wave will be reflected, however, and the
resultant picture will have some similarity to that which was discussed
when dealing with the effect of friction on the tide (p. 574).

The numerical computations involved are somewhat lengthy but
have been carried through by Defant. The result, in agreement with the
conclusions presented on p. 575, is that the semidiurnal tide of the
Atlantic Ocean ecan be considered as composed of two standing oscillations
having a phase difference of one quarter period or three lunar hours. The
computation renders only the variation in amplitude and phase along the
middle section of the Atlantic Ocean and, in order to obtain absolute
values, it is necessary to introduce observed values from two localities.
As such observations Defant selected the tidal data from the Azores in
the North Atlantic Ocean and from Tristan da Cunha in the South
Atlantic.

A check on the theory is obtained by comparing observed values
of the amplitude and the phase of the semidiurnal tide at other islands
of the Atlantic Ocean with the computed values, and a further check is
possible by comparing theoretical phase angles along the central part of
the Atlantic Ocean with those which can be derived from Sterneck’s
chart of cotidal lines for the diurnal tide. 'This chart, which is reproduced
in fig. 150, is based not only upon data from islands but upon all available
data on the coasts. The full-drawn lines in fig. 151 show Defant’s
computed values of the amplitude and phase of the semidiurnal tide
along a line which approximately follows the center of the Atlantic Ocean.
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The crosses indicate the amplitude or phase at the island stations, the
names of which are shown in the figure, and the dashed line in fig. 151B
indicates the change in phase according to Sterneck’s map. The agree-
ment between observations and computations is remarkably good, all of
the crosses falling nearly on the computed curves. Thediscrepancyinthe
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Fig. 151. (A) Computed variation of the amplitude of the semidiurnal tide along
the central part of the Atlantic Ocean (according to Defant). Crosses indicate
observations at islands. (B) Computed variation of the phase of the semidiurnal
tide along the central part of the Atlantic Ocean (according to Defant). Crosses
represent observations at islands, and dashed lines represent the variation according
to Sterneck’s map. (C) Computed variation of phase of the semidiurnal tidal cur-
rents along the central part of the Atlantic Ocean (according to Defant). Dots
represent, observed values

northern part of the North Atlantic Ocean between the computed phase
and the phase as derived from Sterneck’s map can be accounted for
by the fact that the location of the amphidromic point to the south of
Greenland is admittedly uncertain. The agreement speaks strongly in
favor of Defant’s concepts, and further evidence for the validity of his
computations is obtained by an examination of the tidal currents as
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derived mainly on the Meteor Expedition. Figure 151C shows the com-
puted phase of the maximum tidal current which corresponds to the
theoretical amplitude and phase of the tide, and in the same figure are
entered as dots the observed phases of the tidal current at 16 anchor
stations. All the observed values fall remarkably close to the computed
curve, and this result is of great importance because it represents an
entirely independent check on the correctness of the fundamental assump-
tions concerning the character of the tide. :

Certain discrepancies are revealed, however, if one compares the
observed amplitudes of the tidal currents with the theoretical. Defant
points out that the computed and observed velocities show similar varia-
tions with latitude if one subtracts from the observed velocities a latitude
effect which can be ascribed to the earth’s rotation. The latter was
neglected when making the computation and must therefore be eliminated
from the observed values. The correction which should be applied
is due to the fact that on the rotating earth the velocity of the tidal
current is

Yo
Vi st

if v, represents the corresponding velocity, neglecting the earth’srotation,
and where s = (7 sin ¢)/12 (p. 571). In order to make a comparison
between the computed and the observed values, the latter should be
reduced by multiplication with 4/1 — s%.

After having done this, Defant finds that the character of the variation
of the velocities agrees with the computed velocities, but the observed
velocities are between two and three times greater than the computed.
The computations give velocities of about 3 cm/sec, whereas the reduced
observations give velocities of about 8 cm/sec. Defant suggests that
this discrepancy arises because the direction of the tidal currents is not
uniform through an entire cross section, as postulated by the theory, but
another possible explanation is suggested on p. 595. Whether or not
these explanations are accepted, the evidence in favor of Defant’s theory
is so great that his explanation of the semidiurnal tides of the Atlantic
Ocean has to be given weight.

Concerning the character of the tidal currents it should be observed,
furthermore, that the current measurements plainly show the effect
of the earth’s rotation. At all anchor stations the average semidiurnal
current between the surface and the greatest depth of observation showed
rotating currents, the direction of rotation being cum sole in 55 of 60 cases,
inelnding as cum sole four cases in which the current was practically
alternating. The ratio between the major and minor axes of the current
ellipses was on an average close to the theoretical value s = (T sin ¢)/12
(p. 571). 'Thus, in mean latitude 36°18’, the observed ratio between the

Y =
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axes was 0.57 against computed 0.61, and in latitude 8°57/, the observed
ratio was 0.19 against computed 0.16. These results clearly demonstrate
the effect of the rotation of the earth, which was also brought out by the
general increase of velocities when departing from the Equator.

Defant also computed the difference between the time of the maximum
tidal current at the different anchor stations and the time of high water.
He finds that in general high water occurs about one and a half hours
before the maximum tidal current towards the north, and points out that
this time difference should be zero if one had to deal with a progressive
wave, and three hours if one had to deal with a standing wave. The fact
that the time difference lies between these two values also shows that the
semidiurnal tide of the Atlantic Ocean has neither the character of a
progressive wave nor that of a standing wave, but is intermediate and
can be regarded as brought about by superposition of several standing
waves. It may especially be observed that in the South Atlantic Ocean
the wave has nearly the character of a progressive wave, whereas in the
North Atlantic Ocean the characteristics of a standing wave are more
conspicuous.

The diurnal tide of the Atlantic Ocean is less well-known and Defant
confines himself to a more summary treatment, the results of which indi-
cate, however, that similar concepts are applicable in that case as well.
It should be particularly pointed out that in the case of the diurnal wave
the ratio between the axes of the current ellipses does not increase as
rapidly as required by the simple theory on p. 571. According to this
theory the current ellipse should degenerate in 30°N to a circle with
infinite radius, and beyond 30°N diurnal waves of the simple character
considered should no longer be possible. The observations show that the
ratio between the axes of the diurnal current ellipses increases very slowly
with increasing latitude, indicating that in relation to the diurnal wave the
Atlantic Ocean cannot be considered as a wide ocean but as a bay or
canal of moderate width. This conclusion may have bearing on future
studies of the diurnal tides.

Similar treatment of the tides of other oceans has not yet been
attempted and will encounter much greater difficulties. This is par-
ticularly true when considering the Pacific Ocean, which is so large that
there the free tides must be of much greater importance.

Internal Waves

The waves which have been dealt with so far are characterized by
maximum vertical displacements at the surface. For short waves the
vertical displacement of the water particles decreases exponentially
downwards, and for long waves the vertical displacement decreases
linearly with depth, being zero at the bottom (p. 521). These waves will
now be called ordinary waves. They are the only ones possible in homo-
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geneous water, but they are also possible in stratified water or in water in
which the density is not a function of depth only. In stratified water
and in water in which the density varies with depth, other types of waves
may occur which are called boundary or internal waves, and which are
characterized by having the greatest vertical displacements at the
boundary surface or at some intermediate depth where the amplitude ean
many times exceed the amplitudes of waves on the free water surface.

The theory of the internal waves was first developed by Stokes
(Lamb, 1932, p. 370) in the simple case of two layers of different density,
and the general theory of progressive internal waves in heterogeneous
water was developed by Fjeldstad (1933). Both theories have found
application to oceanographic phenomena.

In a fluid consisting of two layers of infinite thickness, one lower
layer of density p and one upper layer of density p’, waves at the boundary
surface between the two layers will have a velocity of progress as given by

roflp =0
e (X1V, 46)

These waves are short waves because it is assumed that both layers of
fluid are of infinite thickness, on which assumption the wave length L
is always negligible compared to the thickness of the layers. If o
means the density of the air and p the density of the water, the equation
gives the velocity of progress of ordinary surface waves (p. 519), as o’ is
very small relative to p. The surface waves which were dealt with on
pp. 522-537 can therefore be considered as “internal” waves on the
boundary between the air and the sea.

When dealing with internal waves in water which has a free surface
but consists of two homogeneous layers of different density, the kinematic
and dynamic boundary conditions must be fulfilled both at the free
surface and at the internal boundary surface, and the equation of con-
tinuity must be satisfied. This leads to a quadratic equation for ¢
which, for short waves, has the approximate roots

g gL s _ 9L ___ﬂfﬂ_'__
C1 211_) Ca o 5 otk T p,; (XIV, 47)

assuming that the thickness of the lower layer A is great compared to
the wave length. Here p represents the density of the lower layer
and p’ and I’ represent density and thickness of the upper layer. If the
wave length is great compared to &', xh’ is a small quantity, coth k' can
be replaced by 1/«h’, and equations (XIV, 47) are reduced to

s b b e X1V, 48
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Applied to the ocean, this means that wherever there exists a thin top
layer of water of small density, two types of waves are possible: the
ordinary surface waves that progress with velocity ¢1; and the internal
waves at the boundary between the light top layer and the heavier water
underneath, that progress with velocity ¢;. Ekman (1904) has availed
himself of this conclusion in order to explain the phenomenon known as
“dead water.” In the time of the sailing vessels many captains reported
that with a light breeze their vessels occasionally appeared to “stick” in
the water, behaving sluggishly and making little headway. The experi-
ence was particularly common in Arctic waters in the presence of a thin
top layer of nearly fresh water produced by melting of ice, and off rivers
from which fresh water spread out. Slowly moving steamers have had
similar experiences, but when their speed was increased to a few knots the
unusual resistance disappeared. According to Ekman’s theoretical
studies and the results of his numerous experiments, this dead water is
due to the fact that a slowly moving vessel may create internal waves
at the lower boundary of a thin fresh-water layer the thickness of which
is not much less nor much greater than the draft of the vessel. The
energy otherwise applied towards overcoming the ordinary resistance
of the water will now be used also for generating and maintaining internal
waves, for which reason the vessel appears to ‘“‘stick” in the water.
The velocity of progress of internal waves as given by equation (XIV,
48) is, however, small. If the velocity of the vessel is greater than this
small value, no internal waves are created and the vessel can proceed
normally. With p — p’ = 0.025, nearly corresponding to a layer of
fresh water on top of sea water of temperature 10°C and salinity 30 /00,
and with A’ = 400 cm, one obtains ¢z = 100 cm/sec = 1.9 knots. These
numerical values indicate that at a speed of a few knots no internal
waves are created, which is in agreement with the general experience
that dead water is not encountered at speeds above a few knots.

The short internal waves that have been dealt with so far may be
present anywhere in the ocean, but escape observation on the high seas
where the variation of density with depth is less conspicuous. In the
open ocean long internal waves exist, however, and these have in recent
years received much attention. When dealing with two layers and
neglecting the effect of the earth’s rotation the velocities of progress of the
ordinary long wave and of the internal wave are obtained from the
equations
o gl op—

612=g(h+h), Ca—h+h, »

(XIV, 49)

It is assumed that p — p’ is a small quantity and that the wave length
is long compared to the total depth, & + A’. Evidently ¢, represents
the velocity of progress of an ordinary long wave and need not be con-
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sidered here. The velocity ¢z, on the other hand, represents the velocity
of progress of the internal wave. If his great relative to &', the formula is
reduced to (XIV, 48).

The internal wave is characterized by having its maximum amplitude
at the boundary surface. At the free surface the amplitude of the internal
wave does not entirely disappear but is reduced to

R it i
i _%(1‘)_._9_) (XIV, 50)
where the minus sign indicates that at the surface the phase is opposite
to the phase at the poundary Z. At an internal boundary surface in
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Fig. 152. (A) Schematic representation of an internal wave at the boundary
between two liquids of densities p and p’. (B) Schematic representation of the
variation with depth of the amplitudes of the vertical displacements n and =/,
and of the maximum horizontal velocities U’ and U.

the open sea the difference in density (p — p’) hardly ever exceeds
2 % 103, corresponding to, say, o = 25.0 and o/ = 23.0. With this
difference and with Z = 10 m, one obtains 5, = 2 cm, meaning that at the
free surface the amplitude of the wave is so small that for all practical
purposes it can be disregarded. At the bottom, no motion normal to the
bottom can exist and there the vertical displacement must also disappear.
In the simple case under consideration the amplitude of the internal
wave increases linearly from the free surface to the boundary surface and
decreases linearly from the boundary surface to the bottom (fig. 152B).
The change in amplitude with depth is therefore equal to Z/h' in the
upper layer, and to —Z/h in the lower layer. The amplitude of the hori-
zontal particle velocities can be derived from the vertical amplitudes
because the relation exists

v=cr ol (XIV, 51)
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giving V' = caZ/h' and V = —¢oZ/h, respectively. Here V' and V
represent the amplitudes of the horizontal velocities and in the present
case the amplitude is evidently constant within each layer but it changes
abruptly at the boundary surface. The opposite sign indicates that the
velocities are in opposite directions in the two layers and, as V'h' = Vh,
the velocities are inversely proportional to the thickness of the two
layers (fig. 152B). Introducing the velocity ¢. of the internal wave, one
obtains

5 e g p—g 5 \/ ghi= g0
V=2 \/h’(h s V=2 ST (X1V, 52)
With g = 981 cm/sec?, p = 1.025,p — p' =2 X 1075, ' =40 m, h =
160 m, and Z = 10 m, one obtains

¥’ = 19.5 cm/sec, V = 4.8 em/sec.

This numerical example shows that internal waves are characterized by
large horizontal particle velocities. The corresponding velocity of
progress of the internal wave is 78 cm/sec, whereas the ordinary long
wave proceeds at a velocity of 4430 cm/see.

The character of the internal wave at the boundary between two
liquids of different density is illustrated in fig. 152A, which shows the
deformation of the boundary surface and the directions of the horizontal
velocities within the two layers. The wave is supposed to progress from
left to right. At the line marked a the horizontal currents in the upper
layer are divergent, for which reason the lower boundary surface must
rise, and the horizontal velocities in the lower layer are convergent,
for which reason also the boundary surface must rise. At the line marked
b the boundary surface must sink for similar reasons, and the wave must
therefore progress from left to right, as stated. In the figure it is also
indicated that the vertical displacement of the free surface is opposite in
phase to that of the boundary surface, but the displacement of the free
surface has been greatly exaggerated. The pressure at the bottom
remains constant and equal to the hydrostatic pressure because the
vertical accelerations are negligible. The amplitude of the deformation
of the free surface can be computed from the hydrostatic equation and
the result is as before, 7, = —Z(p — p')/p.

If several boundary surfaces are present, several internal waves can
occur simultaneously, and the greater the number of boundary surfaces,
the greater the number of possible internal waves. On the basis of this
regsoning, when the density varies continuously with depth one should
expect an unlimited number of possible internal waves. That such is the
case has been shown by Fjeldstad (1933), who has developed the theory
of internal waves in water in which the density is a continuous function of
Sepin, e deals with progressive waves only, and presents a complete
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solution, neglecting the rotation of the earth and friction. In this case
the possible internal waves corresponding to a given distribution of
density can be computed by means of numerical integration of a simple
differential equation, taking into account the boundary conditions at the
free surface and at the bottom. The equation has an infinite number of
solutions corresponding to an unlimited number of internal waves. The
wave of first order is characterized by vertical displacements in the same
direction from top to bottom and maximum amplitude at one level; the
wave of second order is characterized by vertical displacement in opposite
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Fig. 153. (A) Variation with depth of the vertical displacements corresponding
0 internal waves of first, second, third, and fourth order at Michael Sars Station 115
(according to Fjeldstad). The density distribution is shown by the curve marked
o.. (B) Variation with depth of the amplitudes of the horizontal velocities corre-
gponding to an internal wave of first, second, third, and fourth orders (according to
Fjeldstad). Vertical displacements and amplitudes are plotted on an arbitrary scale.

directions within an upper and lower layer, and by two maxima of ampli-
tude; the wave of third order is characterized by three maxima of ampli-
tude, the wave of fourth order by four maxima, andsoon. Thehorizontal
velocity is always zero where the amplitude is at a maximum and within
the wave of first order the horizontal velocity is therefore zero at one level,
within the wave of second order the horizontal velocity is zero at two
levels, and so on.

Figure 153A shows Fjeldstad’s computed vertical displacements and
horizontal velocities as functions of depth for the internal waves of first,
second, third, and fourth orders, corresponding to the distribution of
density as shown in the same figure, which was observed at Michael Sars
station 115 (Helland-Hansen, 1930), where the depth to the bottom was
580 meters. The amplitudes of the accompanying horizontal velocities
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are presented by the curves in fig. 153B. The amplitudes of the vertical
displacements and horizontal currents in fig. 153 are plotted on an arbi-
trary scale because the computation leads to relative values only. The
absolute values must be determined by observations. Furthermore, the
computation tells nothing about the phase of the waves of different order.
If several waves are present simultaneously, they may have differ-
ent phases, and again the phase of each wave must be determined by
observation.

Fjeldstad’s method also leads to determination of the velocity of
progress of waves of different orders, provided that the depth is constant
and that the distribution of density remains unaltered in the direction of
progress; but the periods of the waves cannot be determined theoretically
and must be derived from observation. At Michael Sars station 115
the velocities of progress were ¢; = 70 cm/sec, ¢z = 39 cm/sec,
¢ = 26 cm/sec, and ¢, = 19.5 em/sec; and for a wave of period 24 lunar
hours the corresponding wave lengths are 62.5 km, 34.8 km, 23.2 km
and 17.4 km, respectively. Evidently, the internal waves are short
compared to tide waves. It should be observed that the velocity of
progress increases when the difference in density between the upper and
lower layers decreases, and also increases with increasing depth to the
bottom. In low and middle latitudes the velocity of progress of the
first-order wave will, however, rarely exceed 300 cm/sec. For diurnal
or semidiurnal waves the corresponding wave lengths are 268 km or
134 km, respectively, and the waves of higher order are correspondingly
shorter.

Observations indicating vertical displacements of water masses
which may be related to internal waves have been made on numerous
occasions when oceanographic observations have been repeated in the
same locality at short time intervals. If observations of temperature
at different depths are made at, say, hourly intervals, from an anchored
vessel or from a vessel which maneuvers in such a manner that its position
changes only one or two miles, it is often found that the temperature
varies more or less periodically at all depths. Assuming that these
variations are due to vertical displacements, one can find the vertical
displacements at the different depths if the average temperature distribu-
tion is known. If, for instance, the average temperature at 200 m is
12.40° and at 220 m is 12.17°, it may be concluded when a temperature of
12.17° is observed at 200 m that water which under undisturbed condi-
tions should be found at 220 m has been displaced 20 m upwards. If the
temperature oscillation at a given depth d is periodic and has an amplitude
of A°, the amplitude of the corresponding vertical oscillation is found by
dividing the amplitude A° by the average temperature gradient at that

" depth, (dd¢/dz)s. Similar conclusions may be based on observations of
salinity and oxygen, and when all these elements have been observed good
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agreement has been obtained between the vertical displacements com-
puted from all three sets of observations. It should be emphasized,
however, that the observed variations need not be due to vertical dis-
placements but may be associated with horizontal motion of hetero-
geneous water masses.

If the observations have been carried out during a sufficiently long
time, it is possible to find the period length of the oscillations. In a
number of cases period lengths have corresponded to tidal periods, and it
has therefore been concluded that internal waves of tidal periods com-
monly occur in the ocean. It is not probable that such internal waves are
caused directly by the tide-producing forces but it is more nearly proba-
ble, as suggested by Defant, that they are caused by the periodie varia-
tions of the actual tidal currents which may lead to periodic changes in the
inclination of isosterie surfaces in the sea. Besides these internal waves
of tidal periods, waves of other periods also exist.

The first observations of short-period variations which indicated
the existence of internal waves were discussed by Helland-Hansen and
Nansen (1909). On the Michael Sars Expedition to the North Atlantic
in 1910, repeated serial observations were made at several stations, and
on one occasion simultaneous observations in the Faeroe-Shetland Chan-
nel were conducted from the Michael Sars and the Scottish research
vessel, the Goldseeker, the two vessels being about 106 km (57 mi) apart.
The possible vertical displacements derived from the temperature
observations can be well represented by two periodic oscillations of period
length 12 and 24 lunar hours. The results of Helland-Hansen’s harmonic
analysis (1930) of these data are given in table 73. It appears that the
oscillations at the two stations were different in respect to the vertical
variations of amplitude and phase of the two waves, and in respect to the
relative magnitude of the semidiurnal and diurnal oscillations. This
might be expected if the oscillations were associated with progressive
internal waves. If waves of different order are present, the combined
result may be a complicated variation with depth of amplitudes and phase
angles (fig. 156, p. 598), and the velocity of progress of such waves is so
small, 0.7 to 2.5 km per hour, that different phases must be found at sta-
tions which are 106 km apart. Furthermore, the amplitudes may vary
along a line at right angles to the direction of progress, owing to the earth’s
rotation, as in a Kelvin wave (p. 555).

In his discussion Helland-Hansen draws special attention to the fact
that the observed variations of temperature may be caused by variations
of horizontal currents and not by internal waves. In the Faeroe-Shetland
Channel all isothermal surfaces slope considerably, and lateral displace-
ment might therefore give rise to such variations as were recorded.
The same reservation must always be made when interpreting oscillations
of temperature in a region where a lateral temperature gradient exists.
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Recent measurements by Seiwell (1937) have substantiated the view,
however, that observed oscillations are due to vertical displacements and
not to horizontal movement, because he selected a locality for repeated
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Fig. 1564. Variation of temperature (thin curve) at a depth of 500
meters on July 13, 1936, and corresponding vertical displacements (heavy
curve). From Seiwell’s observations (1937).

serial measurements in the region NNW of Bermuda within which, on
several of the Atlantis cruises, very small horizontal gradients had been
found. On July 12 and 13, 1936, Seiwell (1937) observed very large

TasLE 73

RESULTS. OF REPEATED SERIES OF TEMPERATURE AND SALINITY
OBSERVATIONS IN THE FAEROE-SHETLAND CHANNEL
(August 13-14, 1910, at the Michael Sars Station 115 in Lat. 61°0'N, Long. 2°41'W,
Depth 580 m, and at the Scottish Station Sc (Goldseeker), in Lat. 61°32", Long. 4°19'W,
Depth 725 m. According to Helland-Hansen, 1930)

Semidiurnal vertical displacements Diurnal vertical displacements
Michael Sars Michael Sars
Depth 115 Se 115 Se
(m)
Ampli- | Phase | Ampli- | Phase | Ampli- | Phase | Ampli- Phase
tude (lunar tude | (lunar tude (lunar tude (lunar
(m) hours) (m) hours) (m) hours) (m) hours)
100 15 6.3 42 0.7 18 17.0 39 12.3
200 12 8.4 58 1L 2 16 15.9 11 14.2
300 24 9.3 22 11.6 9 17-7 8 127
400 7 9.5 11 9.2 10 9.0 9 4.4
500 3 6.6 24 111 5 11.3 6 5:2
600 24 7.3 25 1:2

vertical displacements, reaching total ranges during 24 hours up to 80 m
at depths of 500 to 600 m. As an example the observed temperatures at
500 m are shown in fig. 154 where the corresponding vertical displace-
ments are also entered. The latter were computed by dividing the tem-
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perature deviations from the 24-hourly mean value by 0.0125, the average
temperature gradient at 500 m. In the figure an upward displacement is
positive.

Harmonic analysis showed that at all levels the major part of the
observed oscillations could be represented as the sum of three oscillations
of periods 24, 12, and 8 lunar hours. The amplitudes of the harmonic
terms varied with depth, but the 24-hour term dominated at all levels and
the 8-hour term was smallest at most levels. The facts that in this case
horizontal motion cannot account for the observed variations of tempera-
ture and that the oscillations were periodic strongly suggest the presence
of some kind of wave motion.

TasLE 74
RESULTS OF CURRENT MEASUREMENTS AND REPEATED SERIES OF
TEMPERATURE AND SALINITY OBSERVATIONS
{(Meteor Anchor Station 176 in Lat. 21°29.8'S, Long. 11°41.5'W, Near the Middle Line
of the South Atlantic Ocean. Depth to the bottom, 21560 m. According to Defant

1932)
Semidiurnal waves Diurnal waves
Vertical Vertical
Current : Current :
Depth displacement, displacement
@) | Mk | Vol Maxi- | Vel
miﬁ- ietoc- Phase |Ampli-| Phase axl- | Ve'0C ppage |Ampli-| Phase
Y. mum | ity :
current| (cm/ (lunar| tude |(lunar cuibrent| tem / (lunar| fude |(lunar
towardal dae hours)| (m) |hours)l, . 4o 20) hours)| (em) |hours)
0 |N41°W| 6.8 3.5
50 |N30W| 9.4 3.0 N 12°W| 10.3 | 11.8
100 [N72E| 5.4 | 1.9 N33W| 4.8 15.9
150 |[N67E| 11.6 3.3 7 3.7 N84W| 9.9 6.1 4 7.4
200 |N 61 W| 11.1 6.8 10 4.0 N63 W| 6.7 3.8 8 16.9
300 [N42W| 9.4 6.3 7 3.6 [N4OW| 4.7 5.4 6 23.4
500 |[N51W| 5.7| 3.2 7 3.8 N14W| 11.9 | 17.2 6 6.4

The existence of internal waves is also confirmed by the results of
numerous current measurements from vessels anchored in deep water
(Ekman and Helland-Hansen, 1931, Defant, 1932, Lek, 1938). Observa-
tions from different depths show that currents of tidal periods dominate;
but, instead of being uniform from surface to bottom as would be expected
if the currents were ordinary tidal currents, the amplitude and the time of
maximum current (the phase) vary in a complicated manner with depth,
and at some levels the semidiurnal currents are strongest, and at others,
the diurnal. This is illustrated by the results of current measurements
and repeated serial observations at Meteor anchor station 176 on the Mid-
Atlantic Ridge in the South Atlantic Ocean, lat. 21°29.8S, long. 11°41.5'W
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(see table 74). Direction, velocity, and phase of the semidiurnal and
diurnal components of the currents which were rotating cum sole, varied
apparently irregularly from one depth to another. The same was true
in the case of the vertical displacements, particularly the diurnal. The
observations were limited, however, to the upper 500 m, and as the depth
to the bottom was 2150 m only part of the total of possible internal waves
was observed.

It is evident that extremely complicated currents may be found if
several internal waves of different orders, different phases, and different
tidal periods are present, and if the currents associated with these waves
are superimposed upon the ordinary tidal currents. At first glance it
may appear hopeless to separate the latter from the currents of the inter-
nal waves of tidal periods, but fortunately these ‘“internal tidal currents”
can be eliminated if observations are available from a sufficient number of
depths. Because (p. 588)

a
U = c,.%';

where », is the horizontal particle velocity of the wave of nth order,
and ¢, and 7, the corresponding velocity of progress and vertical displace-

ment; and because for all internal waves 5 is zero at the surface and at the
bottom, one has generally

d
f tadz =0, (X1V, 53)
0

When dealing with long internal waves at the boundary between two
layers, the corresponding equation was V'A’ — VA = 0.

It follows from equation (XIV, 53) that currents associated with
internal waves are eliminated by computing the average currents between
the surface and the bottom, provided that observations from a sufficient
number of depths are available. Such elimination was attempted by
Defant when he derived the tidal currents from observations at anchor
stations in the Atlantic Ocean (see p. 584), but the available data were
mostly from the upper layers only, and this accounts perhaps for the
fact that he found much greater velocities than those corresponding
to the range of the tide.

So far, the effect of the earth’s rotation and of friction have been
neglected. It cannot be expected that Corioli’s force alters the variation
with depth of amplitude of the internal wave, and Fjeldstad’s method
should therefore in all cases give correct results as to the relative ampli-
tudes. On the rotating earth the accompanying currents, however, will
also be rotating if the period of the internal wave approaches the period
of a pendulum day. Transverse currents will accordingly be present,
but these must also satisfy equation (XIV, 53) and can therefore be
eliminated if observations from many depths are available. The velocity
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of progress of the wave will probably be increased and the currents
corresponding to an internal wave of given amplitude will therefore be
stronger.

An internal wave in water consisting of two layers of different density
can be considered as an oscillation of the boundary surface. Defant
(1940) has shown that on the rotating earth the period of a free oscillation
of a boundary surface in the sea approaches the period of the inertia
oscillation when the dimensions of the oscillating system are great.
In a basin of length I the longest period of the free oscillations is, with the
previous notations and neglecting the earth’s rotation,

i A A Fh
T =221 \/p S e (XIV, 54)
The period of the inertia oscillation is T, = 2r/2w sin ¢. Defant obtains
the result that on the rotating earth the period of the free oscillation is

7,
1 (T/ T

provided that the width of the basin is at least as great as the length.
Tt follows that if 7', is great compared to 7, which may happen if [ is
great, T approaches 7. Defant deals with a two-layer system only, but
his general result is undoubtedly correct and is of the greatest importance
to the interpretation of observed currents and vertical displacements
associated with internal waves.

As a numerical example values from the Baltic may be introduced,
p—p =2X10°3 h' =25 m, and h = 35 m. With these values one
obtains T, = 3.75 (I in meters). If it is required that 7./T, = 0.1, one
obtains in latitude 57°49’, [ = 136 km. In abasinof these dimensions, the
difference between the periods of the free oscillations and the inertia
oscillation would be only 1 per cent, and it seems therefore probable
that a disturbance which would develop motion in the inertia circle would
set up free oscillations of the boundary surface. A deeper basin or a
basin in lower latitudes would have to be of greater dimensions; thus,
with p — o’ =2 X 103, k' = 500 m, and h = 1500 m, one obtains
T, = 0.736 [, and with T./T. = 0.1, one finds that in the latitude 57°49’,
I = 692 km, and in latitude 30°, | = 1170 km.

The friction will lead to a dissipation of the energy of the internal
wave, and unless the wave is maintained by a periodic disturbance it will
gradually die off. The current observations from the Baltic by Gustafson
and Kullenberg, which were discussed on page 438 (fig. 104), can be
interpreted as inertia oscillations that may be associated with an internal
wave and as showing the gradual dissipation of the energy of the wave.

It is evident from this discussion that the internal waves greatly
complicate the actual movement of the water masses and lead to the

T = (XIV, 55)
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existence of extremely intricate patterns of currents and vertical dis-
placements, and also that very extensive observations are needed in
order to find the character of the internal waves. By making use of
Fjeldstad’s theory, however, it is possible in some cases to unscramble
the puzzle presented by repeated observations which at first glance show
nothing but a confusion of apparently meaningless variations.

o D N S R SR R i T i T B T e
JUNE 24, 1930

Fig. 155. Variation in depth of stated g: values
on June 23 and 24, 1930, according to observations of
the Snellius Expedxtlon at Station 253A in lat. 1°47.5'S,
long. 126°59.4'E.

An illustration of the application of Fjeldstad’s theory is given by
Lek (1938) in his discussion of results of current and serial measurements
of the Snellius Expedition in the eastern part of the Netherlands East
Indies, 1929-1930. On this expedition current measurements were
made at a number of anchor stations and at one of these, station 253A,
lat. 1°47.5'S, long. 126°59.4’E, very complete observations comprised
hourly measurements during 26 hours of currents at 0, 50, 100, 200, 350,
and 500 m, and hourly observations of temperature, salinity, and oxygen
at seven depths between the surface and 800 m. The depth to the
bottom was 1740 m. From the temperature and salinity data the
density was computed. In fig. 155 is shown the variation in depth of
different o; curves during the period of observation. From this graph
one obtains immediately the impression that large vertical oscillations
took place, some of which appear to have been of a diurnal, others of a
semidiurnal, period. The phases of the oscillations appear to have
varied with depth, the vertical oscillation at a depth of about 50 m being
opposite in phase to the oscillation at a depth of about 230 m. Hence,
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internal waves of semidiurnal and diurnal tidal periods apparently were
present. From the observations, the amplitudes and phases of the
semidiurnal and diurnal vertical oscillations were derived at the levels
50, 100, 150, 250, and 400 m.

In order to examine the character of these waves, Lek, in cooperation
with Fjeldstad, computed the relative amplitudes of the internal waves
of first, second, third, and fourth orders by means of the average dis-
tribution of density between the surface and the bottom. Consider
first the semidiurnal oscillations. It is evident that any observed
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Fig. 156, (A) Variation with depth of the amplitudes of internal waves of order
1 to 4 at Snellius Station 253A. The phases of the different waves are shown in the
figure. (B) Curves show the variation with depth of amplitude » and phase «, as
derived from the curves in (A). Crosses and dots indicate observed values (according
to Lek and Fjeldstad).

variation with depth of amplitude and phase can be represented by a
sufficiently large number of the theoretical internal waves of different
orders, because the absolute values of the theoretical amplitudes and
the phase angles of the theoretical displacements can be adjusted to fit
the observed data. A certain check on the theory is, however, obtained
if the number of the theoretical internal waves is smaller than the number
of depths of observations. :

In the present case observations from five levels were used for deter-
mining the amplitudes and phases to be assigned to the internal waves
of orders one to four, meaning that an adjustment was made, and that
the validity of the theory could be checked to a certain extent by examin-
ing how closely the observed values would agree with the theoretical
after making such adjustments. Figure 156A shows the adjusted ampli-
tudes and phase angles of the internal waves of order one to four between
the surface and 500 m. From this figure it is evident that the wave of
third order is dominant. By combining these four waves one obtains
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the theoretical curves for the variation with depth of amplitude and
phase angle of the semidiurnal oscillation, which are shown in fig. 156B,
and in which the observed values are entered as circles and crosses.
The good agreement speaks in favor of the theory, and a similar computa-
tion dealing with the diurnal waves gives equally good agreement.

TasLe 75
CURRENTS OF DIURNAL TIDE PERIOD AT SNELLIUS STATION 253a,
ACCORDING TO OBSERVATIONS AND COMPUTATIONS BASED ON
VERTICAL DISPLACEMENTS

Amplitude (cm /sec) Phase
Depth
(m)
Observed Computed Observed Computed

0 21.8 31.4 144 .9° 126.8°

50 21.6 15.1 120.3 139.0
100 13.7 15.6 247 .8 247.5
150 14.0 19.5 237.7 247.6
200 14.9 13.0 228.8 225.6
350 9.0 0.5 260.9 202.5
500 7.8 6.1 2.9 352.7

These results cannot be considered as conclusive evidence as to the
character of the observed displacements, because the numerical values
of the theoretical terms have been adjusted to fit the data, but an entirely
independent check can be obtained by computing the currents corre-
sponding to the theoretical internal waves and comparing these computed
values with the observed ones. When doing this, it should be borne in
mind that the theory presupposes the existence of progressive waves,
and agreement in phase of computed and observed currents would
indicate that the internal waves actually were of the progressive type.
It should also be borne in mind that the observed currents include
ordinary tidal currents besides those associated with internal waves of
tidal periods, and that for this reason certain discrepancies must be
expected. The semidiurnal currents were not used as a check on the
theory because there were reasons for believing that these were not of the
simple progressive type, but the computed and observed diurnal currents
which are shown in table 75 are in surprisingly good agreement, par-
ticularly when considering the reservations which were made. Lek
points out that the greatest discrepancies between computed and observed
values occur at a depth of 350 m, where according to the theory the
current due to internal waves should nearly vanish, and that therefore
the discrepancy may be due to the presence of actual tidal currents.
It thus appears that in this case the complicated variations of the currents
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have been disentangled. One reason for the success may be that the
measurements were made very near the Equator, where the effect
of the earth’s rotation should be negligible, as assumed when developing
the theory, for which reason the actual veloeity of progress of the internal
waves should agree with the theoretical.

Lek and Fjeldstad find the following velocities of progress: ¢; = 234
em/sec, ¢z = 116 em/sec, ¢; = 77 cm/sec, ¢4 = 58 cm/sec. The cor-
responding lengths of the waves of period 24 lunar hours are 210 km,
104 km, 69 km, and 52 km, respectively.

This example illustrates the numerous complications which may be
encountered anywhere in the ocean, and serves to emphasize the fact that
many observations of currents over long periods of time are needed in
order to obtain information as to the many types of motion present in
the sea.

Standing internal waves may be present in bays or basins. The
probability of such standing waves is great, because in heterogeneous
water in a bay or a basin of a given form a large number of internal
waves of different wave lengths are possible, corresponding to waves
of different order and corresponding to different period lengths. An
intermittent disturbance or a disturbance of tidal period may therefore
bring about an oscillation which corresponds to one of the possible free
oscillations of the system, particularly because a small amount of energy
is needed for creating an internal wave.

In a bay of constant depth and width the periods of oscillation of free
standing waves in the presence of two layers are

_4 h+ K
\fp e (XIV, 56)

where n is a positive integer (p. 539). The periods of such standing
waves may be very long. With [ = 200 km = 2 X 107 em, p — p’ =
2X10°% h =400 m =4 X 10¢* cm, and 2 = 100 m = 10* cm, one
obtains T; = 3.25 days. When dealing with such long periods the
effect of the earth’s rotation must become conspicuous, and application
of the formula is therefore restricted. This simple formula has neverthe-
less been used by Wedderburn in order to explain internal vertical
oscillation of an amplitude of about 25 m and a period of about 14 days
which O. Pettersson observed in Gulmarfjord on the southwest coast of
Sweden during two months of 1909. With [ = 200 km, p — p’ =4 X
1073, h = 100 or 200 m, and A’ = 20 m, corresponding approximately
to the conditions at which the observations were made, and adding a
correction for the width of the opening which was about 50 km (p. 541),
one obtains T'; = 13.9 or 14.2 days.

A computation of this nature may give approximately correct results
if a distinct boundary surface is present and if the geometrical shape
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of the bay is simple, but in most cases one has to consider that the
density varies continuously with depth and that the shape of the
bay is irregular. An unlimited number of free standing oscillations are
possible because in a vertical direction an infinite number of internal
waves of different orders may be present, and in a horizontal direction
the number of nodes may lie between one and infinity. However, the
waves of high order or of many nodes cannot be expected to exist for
any length of time because the dissipation of energy will be very fast in
such waves, owing to the great velocity gradients. The probable number
of standing waves in a bay is therefore limited, although it may be quite
high. It has been suggested by Sverdrup (1940) and confirmed by a
theoretical examination by Munk (1941) that internal standing waves of
periods of about 7 and 14 days may account for peculiar conditions
observed in the Gulf of California on board the E. W. Scripps in February
and March, 1939.

In conclusion, two effects of internal waves should be emphasized
because they have bearing on general oceanographic problems. In the
first place the internal waves probably are of importance to the process of
mixing. Where internal waves are present, large velocity gradients
are often met with which lead to great values of the eddy viscosity.
Furthermore, owing to the dissipation of energy by friction, a given water
mass will never return exactly to the locality from which it started out,
even in the absence of general currents, and consequently an exchange of
water in horizontal direction must take place. The intensity of the
mixing processes which are maintained by internal waves has not yvet
been examined, but it is probable that these processes are not negligible.

In the second place, it has been pointed out, particularly by Seiwell
(1937), that owing to the existence of internal waves the distribution of
mass along any vertical will be subject to periodic variations and, as a
consequence, the geopotential height of the free surface relative to a
given isobaric surface will vary periodically. This agrees with the state-
ment (p. 588) that when dealing with internal waves on a boundary
between two liquids the free surface will also show a wave motion of a
small amplitude. The variations in height of the free surface are so
small that when dealing with the internal wave they can be disregarded,
but when examining results of dynamic computations they cannot be
left out of account because these variations are of the same order of
magnitude as the horizontal differences in geopotential height which may
oceur on distances up to 100 km or more. As an illustration, fig. 157
shows the variation of geopotential height of the free surface above the
800-decibar surface as derived from the serial observations at Snellius
station 253A. It is seen that during 26 hours the height of the surface
varies no less than 14.5 dyn em. Seiwell has computed that, due to
internal waves at Atlantis station 2639 (p. 453) the variations of the
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geopotential height of the free surface relative to the 2000-decibar surface
reached a value of 8.45 dyn em. The disturbing conclusion at which
one arrives is that charts of geopotential topography may not represent
the average topography of the free surface but may show a number of
features which, instead of being associated with the general distribution
of magss, are brought about by the presence of internal waves. In view

& 3 b & & ioh 12h 1ah 16" eh 200 2z
< JUNE 24,1930 :
g
175 5 175
arss — ; o
mog — 170
©
Lies 25 "\___,/ 1651

o

1 1 1 1 1 1 1 1 1 1 1 1

Fig. 157. Variation with time of the dynamic height of the surface over the
800-decibar surface at Snellius Station 253A.

of this circumstance which, so far, has not received great attention,
conclusions as to general currents based on charts of geopotential topog-
raphies should be used with even more reservation than has been previ-
ously emphasized.
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